Structure sumTheory
signature sumTheory =
sig
type thm = Thm.thm
(* Definitions *)
val INL_DEF : thm
val INR_DEF : thm
val ISL : thm
val ISR : thm
val IS_SUM_REP : thm
val OUTL : thm
val OUTR : thm
val SUM_ALL_def : thm
val SUM_FIN_def : thm
val SUM_MAP_def : thm
val SUM_REL_def : thm
val SUM_SET_def : thm
val sum_ISO_DEF : thm
val sum_TY_DEF : thm
val sum_case_def : thm
(* Theorems *)
val EXISTS_SUM : thm
val FORALL_SUM : thm
val INL : thm
val INL_11 : thm
val INL_PRS : thm
val INL_RSP : thm
val INR : thm
val INR_11 : thm
val INR_INL_11 : thm
val INR_PRS : thm
val INR_RSP : thm
val INR_neq_INL : thm
val IN_SUM_FIN_THM : thm
val ISL_OR_ISR : thm
val ISL_PRS : thm
val ISL_RSP : thm
val ISR_PRS : thm
val ISR_RSP : thm
val NOT_ISL_ISR : thm
val NOT_ISR_ISL : thm
val SUM_ALL_CONG : thm
val SUM_ALL_MONO : thm
val SUM_ALL_SET : thm
val SUM_EQUIV : thm
val SUM_MAP : thm
val SUM_MAP_CASE : thm
val SUM_MAP_CONG : thm
val SUM_MAP_I : thm
val SUM_MAP_PRS : thm
val SUM_MAP_RSP : thm
val SUM_MAP_SET : thm
val SUM_MAP_o : thm
val SUM_QUOTIENT : thm
val SUM_REL_EQ : thm
val SUM_REL_REFL : thm
val SUM_REL_SYM : thm
val SUM_REL_THM : thm
val SUM_REL_TRANS : thm
val SUM_SETLR_THM : thm
val cond_sum_expand : thm
val datatype_sum : thm
val sum_Axiom : thm
val sum_CASES : thm
val sum_INDUCT : thm
val sum_axiom : thm
val sum_case_cong : thm
val sum_distinct : thm
val sum_distinct1 : thm
val sum_grammars : type_grammar.grammar * term_grammar.grammar
(*
[pair] Parent theory of "sum"
[INL_DEF] Definition
⊢ ∀e. INL e = ABS_sum (λb x y. x = e ∧ b)
[INR_DEF] Definition
⊢ ∀e. INR e = ABS_sum (λb x y. y = e ∧ ¬b)
[ISL] Definition
⊢ (∀x. ISL (INL x) ⇔ T) ∧ ∀y. ISL (INR y) ⇔ F
[ISR] Definition
⊢ (∀x. ISR (INR x) ⇔ T) ∧ ∀y. ISR (INL y) ⇔ F
[IS_SUM_REP] Definition
⊢ ∀f. IS_SUM_REP f ⇔
∃v1 v2. f = (λb x y. x = v1 ∧ b) ∨ f = (λb x y. y = v2 ∧ ¬b)
[OUTL] Definition
⊢ ∀x. OUTL (INL x) = x
[OUTR] Definition
⊢ ∀x. OUTR (INR x) = x
[SUM_ALL_def] Definition
⊢ (∀P Q x. SUM_ALL P Q (INL x) ⇔ P x) ∧
∀P Q y. SUM_ALL P Q (INR y) ⇔ Q y
[SUM_FIN_def] Definition
⊢ ∀A B.
SUM_FIN A B = (λab. case ab of INL a => a ∈ A | INR b => b ∈ B)
[SUM_MAP_def] Definition
⊢ (∀f g a. SUM_MAP f g (INL a) = INL (f a)) ∧
∀f g b. SUM_MAP f g (INR b) = INR (g b)
[SUM_REL_def] Definition
⊢ (∀R1 R2 x ab. (R1 +++ R2) (INL x) ab ⇔ ISL ab ∧ R1 x (OUTL ab)) ∧
∀R1 R2 y ab. (R1 +++ R2) (INR y) ab ⇔ ISR ab ∧ R2 y (OUTR ab)
[SUM_SET_def] Definition
⊢ (∀f1 f2 a. sum$SUM_SET f1 f2 (INL a) = f1 a) ∧
∀f1 f2 b. sum$SUM_SET f1 f2 (INR b) = f2 b
[sum_ISO_DEF] Definition
⊢ (∀a. ABS_sum (REP_sum a) = a) ∧
∀r. IS_SUM_REP r ⇔ REP_sum (ABS_sum r) = r
[sum_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION IS_SUM_REP rep
[sum_case_def] Definition
⊢ (∀x f f1. sum_CASE (INL x) f f1 = f x) ∧
∀y f f1. sum_CASE (INR y) f f1 = f1 y
[EXISTS_SUM] Theorem
⊢ ∀P. (∃s. P s) ⇔ (∃x. P (INL x)) ∨ ∃y. P (INR y)
[FORALL_SUM] Theorem
⊢ (∀s. P s) ⇔ (∀x. P (INL x)) ∧ ∀y. P (INR y)
[INL] Theorem
⊢ ∀x. ISL x ⇒ INL (OUTL x) = x
[INL_11] Theorem
⊢ INL x = INL y ⇔ x = y
[INL_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a. INL a = SUM_MAP abs1 abs2 (INL (rep1 a))
[INL_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a1 a2. R1 a1 a2 ⇒ (R1 +++ R2) (INL a1) (INL a2)
[INR] Theorem
⊢ ∀x. ISR x ⇒ INR (OUTR x) = x
[INR_11] Theorem
⊢ INR x = INR y ⇔ x = y
[INR_INL_11] Theorem
⊢ (∀y x. INL x = INL y ⇔ x = y) ∧ ∀y x. INR x = INR y ⇔ x = y
[INR_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀b. INR b = SUM_MAP abs1 abs2 (INR (rep2 b))
[INR_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀b1 b2. R2 b1 b2 ⇒ (R1 +++ R2) (INR b1) (INR b2)
[INR_neq_INL] Theorem
⊢ ∀v1 v2. INR v2 ≠ INL v1
[IN_SUM_FIN_THM] Theorem
⊢ (INL a ∈ SUM_FIN A B ⇔ a ∈ A) ∧ (INR b ∈ SUM_FIN A B ⇔ b ∈ B)
[ISL_OR_ISR] Theorem
⊢ ∀x. ISL x ∨ ISR x
[ISL_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒ ∀a. ISL a ⇔ ISL (SUM_MAP rep1 rep2 a)
[ISL_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a1 a2. (R1 +++ R2) a1 a2 ⇒ (ISL a1 ⇔ ISL a2)
[ISR_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒ ∀a. ISR a ⇔ ISR (SUM_MAP rep1 rep2 a)
[ISR_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀a1 a2. (R1 +++ R2) a1 a2 ⇒ (ISR a1 ⇔ ISR a2)
[NOT_ISL_ISR] Theorem
⊢ ∀x. ¬ISL x ⇔ ISR x
[NOT_ISR_ISL] Theorem
⊢ ∀x. ¬ISR x ⇔ ISL x
[SUM_ALL_CONG] Theorem
⊢ ∀s s' P P' Q Q'.
s = s' ∧ (∀a. s' = INL a ⇒ (P a ⇔ P' a)) ∧
(∀b. s' = INR b ⇒ (Q b ⇔ Q' b)) ⇒
(SUM_ALL P Q s ⇔ SUM_ALL P' Q' s')
[SUM_ALL_MONO] Theorem
⊢ (∀x. P x ⇒ P' x) ∧ (∀y. Q y ⇒ Q' y) ⇒
SUM_ALL P Q s ⇒
SUM_ALL P' Q' s
[SUM_ALL_SET] Theorem
⊢ SUM_ALL P Q ab ⇔ (∀a. a ∈ setL ab ⇒ P a) ∧ ∀b. b ∈ setR ab ⇒ Q b
[SUM_EQUIV] Theorem
⊢ ∀R1 R2. EQUIV R1 ⇒ EQUIV R2 ⇒ EQUIV (R1 +++ R2)
[SUM_MAP] Theorem
⊢ ∀f g z.
SUM_MAP f g z =
if ISL z then INL (f (OUTL z)) else INR (g (OUTR z))
[SUM_MAP_CASE] Theorem
⊢ ∀f g z. SUM_MAP f g z = sum_CASE z (INL ∘ f) (INR ∘ g)
[SUM_MAP_CONG] Theorem
⊢ (∀a. a ∈ setL ab ⇒ f1 a = f2 a) ∧ (∀b. b ∈ setR ab ⇒ g1 b = g2 b) ⇒
SUM_MAP f1 g1 ab = SUM_MAP f2 g2 ab
[SUM_MAP_I] Theorem
⊢ SUM_MAP I I = I
[SUM_MAP_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀R4 abs4 rep4.
QUOTIENT R4 abs4 rep4 ⇒
∀f g.
SUM_MAP f g =
(SUM_MAP rep1 rep3 --> SUM_MAP abs2 abs4)
(SUM_MAP ((abs1 --> rep2) f) ((abs3 --> rep4) g))
[SUM_MAP_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀R4 abs4 rep4.
QUOTIENT R4 abs4 rep4 ⇒
∀f1 f2 g1 g2.
(R1 ===> R2) f1 f2 ∧ (R3 ===> R4) g1 g2 ⇒
((R1 +++ R3) ===> (R2 +++ R4)) (SUM_MAP f1 g1)
(SUM_MAP f2 g2)
[SUM_MAP_SET] Theorem
⊢ (c ∈ setL (SUM_MAP f g ab) ⇔ ∃a. c = f a ∧ a ∈ setL ab) ∧
(d ∈ setR (SUM_MAP f g ab) ⇔ ∃b. d = g b ∧ b ∈ setR ab)
[SUM_MAP_o] Theorem
⊢ SUM_MAP f g ∘ SUM_MAP h k = SUM_MAP (f ∘ h) (g ∘ k)
[SUM_QUOTIENT] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
QUOTIENT (R1 +++ R2) (SUM_MAP abs1 abs2) (SUM_MAP rep1 rep2)
[SUM_REL_EQ] Theorem
⊢ $= +++ $= = $=
[SUM_REL_REFL] Theorem
⊢ (∀x. R1 x x) ∧ (∀a. R2 a a) ⇒ ∀xy. (R1 +++ R2) xy xy
[SUM_REL_SYM] Theorem
⊢ (∀x y. R1 x y ⇔ R1 y x) ∧ (∀a b. R2 a b ⇔ R2 b a) ⇒
∀xy ab. (R1 +++ R2) xy ab ⇔ (R1 +++ R2) ab xy
[SUM_REL_THM] Theorem
⊢ ((R1 +++ R2) (INL x) (INL a) ⇔ R1 x a) ∧
((R1 +++ R2) (INL x) (INR b) ⇔ F) ∧
((R1 +++ R2) (INR y) (INL a) ⇔ F) ∧
((R1 +++ R2) (INR y) (INR b) ⇔ R2 y b)
[SUM_REL_TRANS] Theorem
⊢ (∀x y z. R1 x y ∧ R1 y z ⇒ R1 x z) ∧
(∀a b c. R2 a b ∧ R2 b c ⇒ R2 a c) ⇒
∀xy ab uv.
(R1 +++ R2) xy ab ∧ (R1 +++ R2) ab uv ⇒ (R1 +++ R2) xy uv
[SUM_SETLR_THM] Theorem
⊢ (a1 ∈ setL (INL a2) ⇔ a1 = a2) ∧ (a ∈ setL (INR b) ⇔ F) ∧
(b ∈ setR (INL a) ⇔ F) ∧ (b1 ∈ setR (INR b2) ⇔ b1 = b2)
[cond_sum_expand] Theorem
⊢ (∀x y z. (if P then INR x else INL y) = INR z ⇔ P ∧ z = x) ∧
(∀x y z. (if P then INR x else INL y) = INL z ⇔ ¬P ∧ z = y) ∧
(∀x y z. (if P then INL x else INR y) = INL z ⇔ P ∧ z = x) ∧
∀x y z. (if P then INL x else INR y) = INR z ⇔ ¬P ∧ z = y
[datatype_sum] Theorem
⊢ DATATYPE (sum INL INR)
[sum_Axiom] Theorem
⊢ ∀f g. ∃h. (∀x. h (INL x) = f x) ∧ ∀y. h (INR y) = g y
[sum_CASES] Theorem
⊢ ∀ss. (∃x. ss = INL x) ∨ ∃y. ss = INR y
[sum_INDUCT] Theorem
⊢ ∀P. (∀x. P (INL x)) ∧ (∀y. P (INR y)) ⇒ ∀s. P s
[sum_axiom] Theorem
⊢ ∀f g. ∃!h. h ∘ INL = f ∧ h ∘ INR = g
[sum_case_cong] Theorem
⊢ ∀M M' f f1.
M = M' ∧ (∀x. M' = INL x ⇒ f x = f' x) ∧
(∀y. M' = INR y ⇒ f1 y = f1' y) ⇒
sum_CASE M f f1 = sum_CASE M' f' f1'
[sum_distinct] Theorem
⊢ ∀x y. INL x ≠ INR y
[sum_distinct1] Theorem
⊢ ∀x y. INR y ≠ INL x
*)
end
HOL 4, Trindemossen-1