Structure real_sigmaTheory
signature real_sigmaTheory =
sig
type thm = Thm.thm
(* Definitions *)
val REAL_PROD_IMAGE_DEF : thm
val REAL_SUM_IMAGE_DEF : thm
val concave_fn : thm
val convex_fn : thm
val pos_concave_fn : thm
val pos_convex_fn : thm
(* Theorems *)
val NESTED_REAL_SUM_IMAGE_REVERSE : thm
val REAL_PROD_IMAGE_EMPTY : thm
val REAL_PROD_IMAGE_INSERT : thm
val REAL_PROD_IMAGE_SING : thm
val REAL_PROD_IMAGE_THM : thm
val REAL_SUM_IMAGE_0 : thm
val REAL_SUM_IMAGE_ABS_TRIANGLE : thm
val REAL_SUM_IMAGE_ADD : thm
val REAL_SUM_IMAGE_BOUND : thm
val REAL_SUM_IMAGE_CMUL : thm
val REAL_SUM_IMAGE_CONST_EQ_1_EQ_INV_CARD : thm
val REAL_SUM_IMAGE_COUNT : thm
val REAL_SUM_IMAGE_CROSS_SYM : thm
val REAL_SUM_IMAGE_DELETE : thm
val REAL_SUM_IMAGE_DISJOINT_UNION : thm
val REAL_SUM_IMAGE_EMPTY : thm
val REAL_SUM_IMAGE_EQ : thm
val REAL_SUM_IMAGE_EQ_CARD : thm
val REAL_SUM_IMAGE_EQ_sum : thm
val REAL_SUM_IMAGE_FINITE_CONST : thm
val REAL_SUM_IMAGE_FINITE_CONST2 : thm
val REAL_SUM_IMAGE_FINITE_CONST3 : thm
val REAL_SUM_IMAGE_FINITE_SAME : thm
val REAL_SUM_IMAGE_IF_ELIM : thm
val REAL_SUM_IMAGE_IMAGE : thm
val REAL_SUM_IMAGE_IMAGE_LE : thm
val REAL_SUM_IMAGE_INTER_ELIM : thm
val REAL_SUM_IMAGE_INTER_NONZERO : thm
val REAL_SUM_IMAGE_INV_CARD_EQ_1 : thm
val REAL_SUM_IMAGE_IN_IF : thm
val REAL_SUM_IMAGE_IN_IF_ALT : thm
val REAL_SUM_IMAGE_MONO : thm
val REAL_SUM_IMAGE_MONO_LT : thm
val REAL_SUM_IMAGE_MONO_SET : thm
val REAL_SUM_IMAGE_NEG : thm
val REAL_SUM_IMAGE_NONZERO : thm
val REAL_SUM_IMAGE_PERMUTES : thm
val REAL_SUM_IMAGE_POS : thm
val REAL_SUM_IMAGE_POS_LT : thm
val REAL_SUM_IMAGE_POS_MEM_LE : thm
val REAL_SUM_IMAGE_POW : thm
val REAL_SUM_IMAGE_REAL_SUM_IMAGE : thm
val REAL_SUM_IMAGE_SING : thm
val REAL_SUM_IMAGE_SPOS : thm
val REAL_SUM_IMAGE_SUB : thm
val REAL_SUM_IMAGE_SWAP : thm
val REAL_SUM_IMAGE_THM : thm
val REAL_SUM_IMAGE_sum : thm
val jensen_concave_SIGMA : thm
val jensen_convex_SIGMA : thm
val jensen_pos_concave_SIGMA : thm
val jensen_pos_convex_SIGMA : thm
val real_sigma_grammars : type_grammar.grammar * term_grammar.grammar
(*
[iterate] Parent theory of "real_sigma"
[REAL_PROD_IMAGE_DEF] Definition
⊢ ∀f s. ∏ f s = ITSET (λe acc. f e * acc) s 1
[REAL_SUM_IMAGE_DEF] Definition
⊢ ∀f s. SIGMA f s = ITSET (λe acc. f e + acc) s 0
[concave_fn] Definition
⊢ concave_fn = {f | (λx. -f x) ∈ convex_fn}
[convex_fn] Definition
⊢ convex_fn =
{f |
∀x y t.
0 ≤ t ∧ t ≤ 1 ⇒
f (t * x + (1 − t) * y) ≤ t * f x + (1 − t) * f y}
[pos_concave_fn] Definition
⊢ pos_concave_fn = {f | (λx. -f x) ∈ pos_convex_fn}
[pos_convex_fn] Definition
⊢ pos_convex_fn =
{f |
∀x y t.
0 < x ∧ 0 < y ∧ 0 ≤ t ∧ t ≤ 1 ⇒
f (t * x + (1 − t) * y) ≤ t * f x + (1 − t) * f y}
[NESTED_REAL_SUM_IMAGE_REVERSE] Theorem
⊢ ∀f s s'.
FINITE s ∧ FINITE s' ⇒
SIGMA (λx. SIGMA (f x) s') s = SIGMA (λx. SIGMA (λy. f y x) s) s'
[REAL_PROD_IMAGE_EMPTY] Theorem
⊢ ∀f. ∏ f ∅ = 1
[REAL_PROD_IMAGE_INSERT] Theorem
⊢ ∀f e s. FINITE s ⇒ ∏ f (e INSERT s) = f e * ∏ f (s DELETE e)
[REAL_PROD_IMAGE_SING] Theorem
⊢ ∀f e. ∏ f {e} = f e
[REAL_PROD_IMAGE_THM] Theorem
⊢ ∀f. ∏ f ∅ = 1 ∧
∀e s. FINITE s ⇒ ∏ f (e INSERT s) = f e * ∏ f (s DELETE e)
[REAL_SUM_IMAGE_0] Theorem
⊢ ∀s. FINITE s ⇒ SIGMA (λx. 0) s = 0
[REAL_SUM_IMAGE_ABS_TRIANGLE] Theorem
⊢ ∀f s. FINITE s ⇒ abs (SIGMA f s) ≤ SIGMA (abs ∘ f) s
[REAL_SUM_IMAGE_ADD] Theorem
⊢ ∀s. FINITE s ⇒
∀f f'. SIGMA (λx. f x + f' x) s = SIGMA f s + SIGMA f' s
[REAL_SUM_IMAGE_BOUND] Theorem
⊢ ∀s f b. FINITE s ∧ (∀x. x ∈ s ⇒ f x ≤ b) ⇒ SIGMA f s ≤ &CARD s * b
[REAL_SUM_IMAGE_CMUL] Theorem
⊢ ∀P. FINITE P ⇒ ∀f c. SIGMA (λx. c * f x) P = c * SIGMA f P
[REAL_SUM_IMAGE_CONST_EQ_1_EQ_INV_CARD] Theorem
⊢ ∀P. FINITE P ⇒
∀f. SIGMA f P = 1 ∧ (∀x y. x ∈ P ∧ y ∈ P ⇒ f x = f y) ⇒
∀x. x ∈ P ⇒ f x = (&CARD P)⁻¹
[REAL_SUM_IMAGE_COUNT] Theorem
⊢ ∀f n. SIGMA f (count n) = sum (0,n) f
[REAL_SUM_IMAGE_CROSS_SYM] Theorem
⊢ ∀f s1 s2.
FINITE s1 ∧ FINITE s2 ⇒
SIGMA (λ(x,y). f (x,y)) (s1 × s2) =
SIGMA (λ(y,x). f (x,y)) (s2 × s1)
[REAL_SUM_IMAGE_DELETE] Theorem
⊢ ∀f s a. FINITE s ∧ a ∈ s ⇒ sum (s DELETE a) f = SIGMA f s − f a
[REAL_SUM_IMAGE_DISJOINT_UNION] Theorem
⊢ ∀P P'.
FINITE P ∧ FINITE P' ∧ DISJOINT P P' ⇒
∀f. SIGMA f (P ∪ P') = SIGMA f P + SIGMA f P'
[REAL_SUM_IMAGE_EMPTY] Theorem
⊢ ∀f. SIGMA f ∅ = 0
[REAL_SUM_IMAGE_EQ] Theorem
⊢ ∀s f f'.
FINITE s ∧ (∀x. x ∈ s ⇒ f x = f' x) ⇒ SIGMA f s = SIGMA f' s
[REAL_SUM_IMAGE_EQ_CARD] Theorem
⊢ ∀P. FINITE P ⇒ SIGMA (λx. if x ∈ P then 1 else 0) P = &CARD P
[REAL_SUM_IMAGE_EQ_sum] Theorem
⊢ ∀n r. sum (0,n) r = SIGMA r (count n)
[REAL_SUM_IMAGE_FINITE_CONST] Theorem
⊢ ∀P. FINITE P ⇒ ∀f x. (∀y. f y = x) ⇒ SIGMA f P = &CARD P * x
[REAL_SUM_IMAGE_FINITE_CONST2] Theorem
⊢ ∀P. FINITE P ⇒
∀f x. (∀y. y ∈ P ⇒ f y = x) ⇒ SIGMA f P = &CARD P * x
[REAL_SUM_IMAGE_FINITE_CONST3] Theorem
⊢ ∀P. FINITE P ⇒ ∀c. SIGMA (λx. c) P = &CARD P * c
[REAL_SUM_IMAGE_FINITE_SAME] Theorem
⊢ ∀P. FINITE P ⇒
∀f p.
p ∈ P ∧ (∀q. q ∈ P ⇒ f p = f q) ⇒ SIGMA f P = &CARD P * f p
[REAL_SUM_IMAGE_IF_ELIM] Theorem
⊢ ∀s P f.
FINITE s ∧ (∀x. x ∈ s ⇒ P x) ⇒
SIGMA (λx. if P x then f x else 0) s = SIGMA f s
[REAL_SUM_IMAGE_IMAGE] Theorem
⊢ ∀P. FINITE P ⇒
∀f'.
INJ f' P (IMAGE f' P) ⇒
∀f. SIGMA f (IMAGE f' P) = SIGMA (f ∘ f') P
[REAL_SUM_IMAGE_IMAGE_LE] Theorem
⊢ ∀f g s.
FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ g (f x)) ⇒
SIGMA g (IMAGE f s) ≤ SIGMA (g ∘ f) s
[REAL_SUM_IMAGE_INTER_ELIM] Theorem
⊢ ∀P. FINITE P ⇒
∀f P'. (∀x. x ∉ P' ⇒ f x = 0) ⇒ SIGMA f (P ∩ P') = SIGMA f P
[REAL_SUM_IMAGE_INTER_NONZERO] Theorem
⊢ ∀P. FINITE P ⇒ ∀f. SIGMA f (P ∩ (λp. f p ≠ 0)) = SIGMA f P
[REAL_SUM_IMAGE_INV_CARD_EQ_1] Theorem
⊢ ∀P. P ≠ ∅ ∧ FINITE P ⇒
SIGMA (λs. if s ∈ P then (&CARD P)⁻¹ else 0) P = 1
[REAL_SUM_IMAGE_IN_IF] Theorem
⊢ ∀P. FINITE P ⇒
∀f. SIGMA f P = SIGMA (λx. if x ∈ P then f x else 0) P
[REAL_SUM_IMAGE_IN_IF_ALT] Theorem
⊢ ∀s f z.
FINITE s ⇒ SIGMA f s = SIGMA (λx. if x ∈ s then f x else z) s
[REAL_SUM_IMAGE_MONO] Theorem
⊢ ∀P. FINITE P ⇒
∀f f'. (∀x. x ∈ P ⇒ f x ≤ f' x) ⇒ SIGMA f P ≤ SIGMA f' P
[REAL_SUM_IMAGE_MONO_LT] Theorem
⊢ ∀f g s.
FINITE s ∧ (∀x. x ∈ s ⇒ f x ≤ g x) ∧ (∃x. x ∈ s ∧ f x < g x) ⇒
SIGMA f s < SIGMA g s
[REAL_SUM_IMAGE_MONO_SET] Theorem
⊢ ∀f s t.
FINITE s ∧ FINITE t ∧ s ⊆ t ∧ (∀x. x ∈ t ⇒ 0 ≤ f x) ⇒
SIGMA f s ≤ SIGMA f t
[REAL_SUM_IMAGE_NEG] Theorem
⊢ ∀P. FINITE P ⇒ ∀f. SIGMA (λx. -f x) P = -SIGMA f P
[REAL_SUM_IMAGE_NONZERO] Theorem
⊢ ∀P. FINITE P ⇒
∀f. (∀x. x ∈ P ⇒ 0 ≤ f x) ∧ (∃x. x ∈ P ∧ f x ≠ 0) ⇒
(SIGMA f P ≠ 0 ⇔ P ≠ ∅)
[REAL_SUM_IMAGE_PERMUTES] Theorem
⊢ ∀f p s. FINITE s ∧ p PERMUTES s ⇒ SIGMA f s = SIGMA (f ∘ p) s
[REAL_SUM_IMAGE_POS] Theorem
⊢ ∀f s. FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ⇒ 0 ≤ SIGMA f s
[REAL_SUM_IMAGE_POS_LT] Theorem
⊢ ∀f s.
FINITE s ∧ (∀x. x ∈ s ⇒ 0 ≤ f x) ∧ (∃x. x ∈ s ∧ 0 < f x) ⇒
0 < SIGMA f s
[REAL_SUM_IMAGE_POS_MEM_LE] Theorem
⊢ ∀P. FINITE P ⇒
∀f. (∀x. x ∈ P ⇒ 0 ≤ f x) ⇒ ∀x. x ∈ P ⇒ f x ≤ SIGMA f P
[REAL_SUM_IMAGE_POW] Theorem
⊢ ∀a s. FINITE s ⇒ (SIGMA a s)² = SIGMA (λ(i,j). a i * a j) (s × s)
[REAL_SUM_IMAGE_REAL_SUM_IMAGE] Theorem
⊢ ∀s s' f.
FINITE s ∧ FINITE s' ⇒
SIGMA (λx. SIGMA (f x) s') s =
SIGMA (λx. f (FST x) (SND x)) (s × s')
[REAL_SUM_IMAGE_SING] Theorem
⊢ ∀f e. SIGMA f {e} = f e
[REAL_SUM_IMAGE_SPOS] Theorem
⊢ ∀s. FINITE s ∧ s ≠ ∅ ⇒ ∀f. (∀x. x ∈ s ⇒ 0 < f x) ⇒ 0 < SIGMA f s
[REAL_SUM_IMAGE_SUB] Theorem
⊢ ∀s f f'.
FINITE s ⇒ SIGMA (λx. f x − f' x) s = SIGMA f s − SIGMA f' s
[REAL_SUM_IMAGE_SWAP] Theorem
⊢ ∀f s t.
FINITE s ∧ FINITE t ⇒
SIGMA (λi. SIGMA (f i) t) s = SIGMA (λj. SIGMA (λi. f i j) s) t
[REAL_SUM_IMAGE_THM] Theorem
⊢ ∀f. SIGMA f ∅ = 0 ∧
∀e s.
FINITE s ⇒ SIGMA f (e INSERT s) = f e + SIGMA f (s DELETE e)
[REAL_SUM_IMAGE_sum] Theorem
⊢ ∀f s. FINITE s ⇒ SIGMA f s = sum s f
[jensen_concave_SIGMA] Theorem
⊢ ∀s. FINITE s ⇒
∀f g g'.
SIGMA g s = 1 ∧ (∀x. x ∈ s ⇒ 0 ≤ g x ∧ g x ≤ 1) ∧
f ∈ concave_fn ⇒
SIGMA (λx. g x * f (g' x)) s ≤ f (SIGMA (λx. g x * g' x) s)
[jensen_convex_SIGMA] Theorem
⊢ ∀s. FINITE s ⇒
∀f g g'.
SIGMA g s = 1 ∧ (∀x. x ∈ s ⇒ 0 ≤ g x ∧ g x ≤ 1) ∧
f ∈ convex_fn ⇒
f (SIGMA (λx. g x * g' x) s) ≤ SIGMA (λx. g x * f (g' x)) s
[jensen_pos_concave_SIGMA] Theorem
⊢ ∀s. FINITE s ⇒
∀f g g'.
SIGMA g s = 1 ∧ (∀x. x ∈ s ⇒ 0 ≤ g x ∧ g x ≤ 1) ∧
(∀x. x ∈ s ⇒ 0 < g x ⇒ 0 < g' x) ∧ f ∈ pos_concave_fn ⇒
SIGMA (λx. g x * f (g' x)) s ≤ f (SIGMA (λx. g x * g' x) s)
[jensen_pos_convex_SIGMA] Theorem
⊢ ∀s. FINITE s ⇒
∀f g g'.
SIGMA g s = 1 ∧ (∀x. x ∈ s ⇒ 0 ≤ g x ∧ g x ≤ 1) ∧
(∀x. x ∈ s ⇒ 0 < g x ⇒ 0 < g' x) ∧ f ∈ pos_convex_fn ⇒
f (SIGMA (λx. g x * g' x) s) ≤ SIGMA (λx. g x * f (g' x)) s
*)
end
HOL 4, Trindemossen-1