Structure ratTheory
signature ratTheory =
sig
type thm = Thm.thm
(* Definitions *)
val RATND_THM : thm
val abs_rat_def : thm
val div_gcd_def : thm
val rat_0_def : thm
val rat_1_def : thm
val rat_TY_DEF : thm
val rat_add_def : thm
val rat_ainv_def : thm
val rat_bijections : thm
val rat_cons_def : thm
val rat_div_def : thm
val rat_dnm_def : thm
val rat_equiv_def : thm
val rat_exp_def : thm
val rat_expn_def : thm
val rat_geq_def : thm
val rat_gre_def : thm
val rat_leq_def : thm
val rat_les_def : thm
val rat_max_def : thm
val rat_min_def : thm
val rat_minv_def : thm
val rat_mul_def : thm
val rat_nmr_def : thm
val rat_of_int_def : thm
val rat_of_num_def_primitive : thm
val rat_sgn_def : thm
val rat_sub_def : thm
val rep_rat_def : thm
(* Theorems *)
val ABS_RATFRAC_DIV : thm
val ABS_RATFRAC_RATND : thm
val FRAC_ADD_EQUIV1 : thm
val FRAC_MINV_EQUIV : thm
val FRAC_MUL_EQUIV1 : thm
val FRAC_MUL_EQUIV2 : thm
val INT_MOD_MUL : thm
val LDIV_MUL_OUT : thm
val LT_MUL : thm
val NUM_NZERO : thm
val NUM_POSINT_EXISTS_SUC : thm
val RAT : thm
val RATD_NEG : thm
val RATD_NZERO : thm
val RATND_RAT_OF_NUM : thm
val RATND_of_coprimes : thm
val RATND_of_coprimes' : thm
val RATND_suff_eq : thm
val RATN_DIV_RATD : thm
val RATN_EQ0 : thm
val RATN_LEAST : thm
val RATN_NEG : thm
val RATN_RATD_EQ_THM : thm
val RATN_RATD_MULT : thm
val RATN_RATD_RAT_OF_INT : thm
val RATN_SIGN : thm
val RAT_0 : thm
val RAT_0LEQ_NMR : thm
val RAT_0LES_0LEQ_ADD : thm
val RAT_0LES_0LES_ADD : thm
val RAT_0LES_NMR : thm
val RAT_1 : thm
val RAT_1_NOT_0 : thm
val RAT_ABS_EQUIV : thm
val RAT_ADD_ASSOC : thm
val RAT_ADD_CALCULATE : thm
val RAT_ADD_COMM : thm
val RAT_ADD_CONG : thm
val RAT_ADD_CONG1 : thm
val RAT_ADD_CONG2 : thm
val RAT_ADD_LID : thm
val RAT_ADD_LINV : thm
val RAT_ADD_MONO : thm
val RAT_ADD_NUM_CALCULATE : thm
val RAT_ADD_ONE_ONE : thm
val RAT_ADD_RID : thm
val RAT_ADD_RINV : thm
val RAT_AINV_0 : thm
val RAT_AINV_ADD : thm
val RAT_AINV_AINV : thm
val RAT_AINV_CALCULATE : thm
val RAT_AINV_CONG : thm
val RAT_AINV_EQ : thm
val RAT_AINV_EQ_NUM : thm
val RAT_AINV_LES : thm
val RAT_AINV_LMUL : thm
val RAT_AINV_MINV : thm
val RAT_AINV_MUL_AINV : thm
val RAT_AINV_ONE_ONE : thm
val RAT_AINV_RMUL : thm
val RAT_AINV_SGN : thm
val RAT_AINV_SUB : thm
val RAT_CONS_TO_NUM : thm
val RAT_DENSE_THM : thm
val RAT_DIVDIV_ADD : thm
val RAT_DIVDIV_MUL : thm
val RAT_DIVMUL_CANCEL : thm
val RAT_DIV_0 : thm
val RAT_DIV_1 : thm
val RAT_DIV_AINV : thm
val RAT_DIV_CALCULATE : thm
val RAT_DIV_CONG : thm
val RAT_DIV_CONG1 : thm
val RAT_DIV_CONG2 : thm
val RAT_DIV_EQ0 : thm
val RAT_DIV_INV : thm
val RAT_DIV_MINV : thm
val RAT_DIV_MULMINV : thm
val RAT_DIV_NEG1 : thm
val RAT_EQ : thm
val RAT_EQ0_NMR : thm
val RAT_EQUIV : thm
val RAT_EQUIV_ALT : thm
val RAT_EQUIV_NMR_GTZ_IFF : thm
val RAT_EQUIV_NMR_LTZ_IFF : thm
val RAT_EQUIV_NMR_Z_IFF : thm
val RAT_EQUIV_REF : thm
val RAT_EQUIV_SYM : thm
val RAT_EQUIV_TRANS : thm
val RAT_EQ_0SUB : thm
val RAT_EQ_AINV : thm
val RAT_EQ_ALT : thm
val RAT_EQ_CALCULATE : thm
val RAT_EQ_LADD : thm
val RAT_EQ_LMUL : thm
val RAT_EQ_NUM_CALCULATE : thm
val RAT_EQ_RADD : thm
val RAT_EQ_RMUL : thm
val RAT_EQ_SUB0 : thm
val RAT_EXPN_0 : thm
val RAT_EXPN_1 : thm
val RAT_EXPN_ADD : thm
val RAT_EXPN_CALCULATE : thm
val RAT_EXPN_DIV : thm
val RAT_EXPN_EQ0 : thm
val RAT_EXPN_EQ_1 : thm
val RAT_EXPN_EQ_1_NEG : thm
val RAT_EXPN_EQ_1_POS : thm
val RAT_EXPN_INJ : thm
val RAT_EXPN_LT : thm
val RAT_EXPN_MINUS1 : thm
val RAT_EXPN_MUL : thm
val RAT_EXPN_NEG : thm
val RAT_EXPN_NEG_LT_ZERO : thm
val RAT_EXPN_PROD : thm
val RAT_EXPN_RAT_MINV : thm
val RAT_EXPN_R_NONZERO : thm
val RAT_EXPN_R_POS : thm
val RAT_EXPN_SUB : thm
val RAT_EXPN_TO_0 : thm
val RAT_EXPN_TO_1 : thm
val RAT_EXP_0 : thm
val RAT_EXP_1 : thm
val RAT_EXP_ADD : thm
val RAT_EXP_CALCULATE : thm
val RAT_EXP_DIV : thm
val RAT_EXP_INJ : thm
val RAT_EXP_LE : thm
val RAT_EXP_LT : thm
val RAT_EXP_LT2 : thm
val RAT_EXP_MINUS1 : thm
val RAT_EXP_MUL : thm
val RAT_EXP_NEG : thm
val RAT_EXP_NEG_INT : thm
val RAT_EXP_NUM : thm
val RAT_EXP_PROD : thm
val RAT_EXP_RAT_MINV : thm
val RAT_EXP_R_NONZERO : thm
val RAT_EXP_R_POS : thm
val RAT_EXP_SUB : thm
val RAT_EXP_TO_0 : thm
val RAT_EXP_TO_NEG : thm
val RAT_LDISTRIB : thm
val RAT_LDIV_EQ : thm
val RAT_LDIV_LEQ_NEG : thm
val RAT_LDIV_LEQ_POS : thm
val RAT_LDIV_LES_NEG : thm
val RAT_LDIV_LES_POS : thm
val RAT_LEQ0_NMR : thm
val RAT_LEQ_ANTISYM : thm
val RAT_LEQ_CALCULATE : thm
val RAT_LEQ_LADD : thm
val RAT_LEQ_LES : thm
val RAT_LEQ_LES_TRANS : thm
val RAT_LEQ_MUL : thm
val RAT_LEQ_RADD : thm
val RAT_LEQ_REF : thm
val RAT_LEQ_TRANS : thm
val RAT_LES0_LEQ0_ADD : thm
val RAT_LES0_LES0_ADD : thm
val RAT_LES0_NMR : thm
val RAT_LES_01 : thm
val RAT_LES_0SUB : thm
val RAT_LES_AINV : thm
val RAT_LES_AINV2 : thm
val RAT_LES_ANTISYM : thm
val RAT_LES_CALCULATE : thm
val RAT_LES_IMP_LEQ : thm
val RAT_LES_IMP_NEQ : thm
val RAT_LES_LADD : thm
val RAT_LES_LEQ : thm
val RAT_LES_LEQ2 : thm
val RAT_LES_LEQ_TRANS : thm
val RAT_LES_LMUL_NEG : thm
val RAT_LES_LMUL_POS : thm
val RAT_LES_MUL_GTR_1 : thm
val RAT_LES_RADD : thm
val RAT_LES_REF : thm
val RAT_LES_RMUL_NEG : thm
val RAT_LES_RMUL_POS : thm
val RAT_LES_SUB0 : thm
val RAT_LES_TOTAL : thm
val RAT_LES_TRANS : thm
val RAT_LE_NUM_CALCULATE : thm
val RAT_LSUB_EQ : thm
val RAT_LSUB_LEQ : thm
val RAT_LSUB_LES : thm
val RAT_LT_LE_NEQ : thm
val RAT_LT_MUL : thm
val RAT_LT_NUM_CALCULATE : thm
val RAT_MINV_1 : thm
val RAT_MINV_CALCULATE : thm
val RAT_MINV_CONG : thm
val RAT_MINV_DIV : thm
val RAT_MINV_EQ_0 : thm
val RAT_MINV_ID : thm
val RAT_MINV_LES : thm
val RAT_MINV_LT_1 : thm
val RAT_MINV_LT_MINUS1 : thm
val RAT_MINV_MUL : thm
val RAT_MINV_RATND : thm
val RAT_MINV_RAT_MINV : thm
val RAT_MUL_ASSOC : thm
val RAT_MUL_CALCULATE : thm
val RAT_MUL_COMM : thm
val RAT_MUL_CONG : thm
val RAT_MUL_CONG1 : thm
val RAT_MUL_CONG2 : thm
val RAT_MUL_LID : thm
val RAT_MUL_LINV : thm
val RAT_MUL_LZERO : thm
val RAT_MUL_NEG : thm
val RAT_MUL_NUM_CALCULATE : thm
val RAT_MUL_ONE_ONE : thm
val RAT_MUL_RID : thm
val RAT_MUL_RINV : thm
val RAT_MUL_RZERO : thm
val RAT_MUL_SIGN_CASES : thm
val RAT_NMRDNM_EQ : thm
val RAT_NMREQ0_CONG : thm
val RAT_NMRGT0_CONG : thm
val RAT_NMRLT0_CONG : thm
val RAT_NMR_Z_IFF_EQUIV : thm
val RAT_NO_IDDIV : thm
val RAT_NO_ZERODIV : thm
val RAT_NO_ZERODIV_NEG : thm
val RAT_NO_ZERODIV_THM : thm
val RAT_OF_INT_CALCULATE : thm
val RAT_OF_NUM : thm
val RAT_OF_NUM_CALCULATE : thm
val RAT_OF_NUM_LEQ : thm
val RAT_OF_NUM_LES : thm
val RAT_RDISTRIB : thm
val RAT_RDIV_EQ : thm
val RAT_RDIV_LEQ_NEG : thm
val RAT_RDIV_LEQ_POS : thm
val RAT_RDIV_LES_NEG : thm
val RAT_RDIV_LES_POS : thm
val RAT_RSUB_EQ : thm
val RAT_RSUB_LEQ : thm
val RAT_RSUB_LES : thm
val RAT_SAVE : thm
val RAT_SAVE_MINV : thm
val RAT_SAVE_NUM : thm
val RAT_SAVE_TO_CONS : thm
val RAT_SGN_0 : thm
val RAT_SGN_AINV : thm
val RAT_SGN_AINV' : thm
val RAT_SGN_AINV_RWT : thm
val RAT_SGN_ALT : thm
val RAT_SGN_CALCULATE : thm
val RAT_SGN_CLAUSES : thm
val RAT_SGN_COMPLEMENT : thm
val RAT_SGN_CONG : thm
val RAT_SGN_DIV : thm
val RAT_SGN_EQ0 : thm
val RAT_SGN_MINV : thm
val RAT_SGN_MUL : thm
val RAT_SGN_NEG : thm
val RAT_SGN_NUM_BITs : thm
val RAT_SGN_NUM_COND : thm
val RAT_SGN_POS : thm
val RAT_SGN_TOTAL : thm
val RAT_SUB_ADDAINV : thm
val RAT_SUB_CALCULATE : thm
val RAT_SUB_CONG : thm
val RAT_SUB_CONG1 : thm
val RAT_SUB_CONG2 : thm
val RAT_SUB_ID : thm
val RAT_SUB_LDISTRIB : thm
val RAT_SUB_LID : thm
val RAT_SUB_RDISTRIB : thm
val RAT_SUB_RID : thm
val RAT_TIMES2 : thm
val RDIV_MUL_OUT : thm
val div_gcd_correct : thm
val div_gcd_reduces : thm
val frac_dnm_EQ0 : thm
val gcd_RATND : thm
val rat_0 : thm
val rat_1 : thm
val rat_ABS_REP_CLASS : thm
val rat_QUOTIENT : thm
val rat_def : thm
val rat_equiv_rep_abs : thm
val rat_equiv_reps : thm
val rat_expn_compute : thm
val rat_of_int_11 : thm
val rat_of_int_ADD : thm
val rat_of_int_EQN : thm
val rat_of_int_LE : thm
val rat_of_int_LT : thm
val rat_of_int_MUL : thm
val rat_of_int_ainv : thm
val rat_of_int_nmrdnm : thm
val rat_of_int_of_num : thm
val rat_of_num_compute : thm
val rat_of_num_def : thm
val rat_of_num_ind : thm
val rat_type_thm : thm
val rep_rat_of_int : thm
val rat_grammars : type_grammar.grammar * term_grammar.grammar
(*
[frac] Parent theory of "rat"
[primeFactor] Parent theory of "rat"
[RATND_THM] Definition
⊢ ∀r. r = rat_of_int (RATN r) / &RATD r ∧ 0 < RATD r ∧
(RATN r = 0 ⇒ RATD r = 1) ∧
∀n' d'.
r = rat_of_int n' / &d' ∧ 0 < d' ⇒ ABS (RATN r) ≤ ABS n'
[abs_rat_def] Definition
⊢ ∀r. abs_rat r = abs_rat_CLASS (rat_equiv r)
[div_gcd_def] Definition
⊢ ∀a b.
div_gcd a b =
(let
d = gcd (Num a) b
in
if d = 0 ∨ d = 1 then (a,b) else (a / &d,b DIV d))
[rat_0_def] Definition
⊢ rat_0 = abs_rat frac_0
[rat_1_def] Definition
⊢ rat_1 = abs_rat frac_1
[rat_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION (λc. ∃r. rat_equiv r r ∧ c = rat_equiv r) rep
[rat_add_def] Definition
⊢ ∀r1 r2. r1 + r2 = abs_rat (frac_add (rep_rat r1) (rep_rat r2))
[rat_ainv_def] Definition
⊢ ∀r1. -r1 = abs_rat (frac_ainv (rep_rat r1))
[rat_bijections] Definition
⊢ (∀a. abs_rat_CLASS (rep_rat_CLASS a) = a) ∧
∀r. (λc. ∃r. rat_equiv r r ∧ c = rat_equiv r) r ⇔
rep_rat_CLASS (abs_rat_CLASS r) = r
[rat_cons_def] Definition
⊢ ∀nmr dnm.
nmr // dnm =
abs_rat (abs_frac (SGN nmr * SGN dnm * ABS nmr,ABS dnm))
[rat_div_def] Definition
⊢ ∀r1 r2. r1 / r2 = abs_rat (frac_div (rep_rat r1) (rep_rat r2))
[rat_dnm_def] Definition
⊢ ∀r. rat_dnm r = frac_dnm (rep_rat r)
[rat_equiv_def] Definition
⊢ ∀f1 f2.
rat_equiv f1 f2 ⇔
frac_nmr f1 * frac_dnm f2 = frac_nmr f2 * frac_dnm f1
[rat_exp_def] Definition
⊢ ∀r i.
r ** i =
if 0 ≤ i then expn r (Num i) else rat_minv (expn r (Num i))
[rat_expn_def] Definition
⊢ (∀r. expn r 0 = 1) ∧ ∀r n. expn r (SUC n) = r * expn r n
[rat_geq_def] Definition
⊢ ∀r1 r2. r1 ≥ r2 ⇔ r2 ≤ r1
[rat_gre_def] Definition
⊢ ∀r1 r2. r1 > r2 ⇔ r2 < r1
[rat_leq_def] Definition
⊢ ∀r1 r2. r1 ≤ r2 ⇔ r1 < r2 ∨ r1 = r2
[rat_les_def] Definition
⊢ ∀r1 r2. r1 < r2 ⇔ RAT_SGN (r2 − r1) = 1
[rat_max_def] Definition
⊢ ∀r1 r2. rat_max r1 r2 = if r1 > r2 then r1 else r2
[rat_min_def] Definition
⊢ ∀r1 r2. rat_min r1 r2 = if r1 < r2 then r1 else r2
[rat_minv_def] Definition
⊢ ∀r1. rat_minv r1 = abs_rat (frac_minv (rep_rat r1))
[rat_mul_def] Definition
⊢ ∀r1 r2. r1 * r2 = abs_rat (frac_mul (rep_rat r1) (rep_rat r2))
[rat_nmr_def] Definition
⊢ ∀r. rat_nmr r = frac_nmr (rep_rat r)
[rat_of_int_def] Definition
⊢ ∀i. rat_of_int i = if i < 0 then -&Num (-i) else &Num i
[rat_of_num_def_primitive] Definition
⊢ $& =
WFREC (@R. WF R ∧ ∀n. R (SUC n) (SUC (SUC n)))
(λrat_of_num a.
case a of
0 => I rat_0
| SUC 0 => I rat_1
| SUC (SUC n) => I (rat_of_num (SUC n) + rat_1))
[rat_sgn_def] Definition
⊢ ∀r. RAT_SGN r = frac_sgn (rep_rat r)
[rat_sub_def] Definition
⊢ ∀r1 r2. r1 − r2 = abs_rat (frac_sub (rep_rat r1) (rep_rat r2))
[rep_rat_def] Definition
⊢ ∀a. rep_rat a = $@ (rep_rat_CLASS a)
[ABS_RATFRAC_DIV] Theorem
⊢ 0 < d ⇒ abs_rat (abs_frac (n,d)) = rat_of_int n / rat_of_int d
[ABS_RATFRAC_RATND] Theorem
⊢ abs_rat (abs_frac (RATN q,&RATD q)) = q
[FRAC_ADD_EQUIV1] Theorem
⊢ rat_equiv x x' ⇒ rat_equiv (frac_add x y) (frac_add x' y)
[FRAC_MINV_EQUIV] Theorem
⊢ frac_nmr y ≠ 0 ⇒
rat_equiv x y ⇒
rat_equiv (frac_minv x) (frac_minv y)
[FRAC_MUL_EQUIV1] Theorem
⊢ rat_equiv x x' ⇒ rat_equiv (frac_mul x y) (frac_mul x' y)
[FRAC_MUL_EQUIV2] Theorem
⊢ rat_equiv x x' ⇒ rat_equiv (frac_mul y x) (frac_mul y x')
[INT_MOD_MUL] Theorem
⊢ m ≠ 0 ⇒ (a * b) % m = (a % m * b % m) % m
[LDIV_MUL_OUT] Theorem
⊢ r1 / r2 * r3 = r1 * r3 / r2
[LT_MUL] Theorem
⊢ a < b ∧ (c < d ∨ c ≤ d ∧ d ≠ 0) ⇒ a * c < b * d
[NUM_NZERO] Theorem
⊢ i ≠ 0 ⇒ Num i ≠ 0 ∧ 0 < Num i
[NUM_POSINT_EXISTS_SUC] Theorem
⊢ 0 < i ⇒ ∃n. i = &SUC n
[RAT] Theorem
⊢ ∀r. abs_rat (rep_rat r) = r
[RATD_NEG] Theorem
⊢ RATD (-r) = RATD r
[RATD_NZERO] Theorem
⊢ 0 < RATD r ∧ RATD r ≠ 0
[RATND_RAT_OF_NUM] Theorem
⊢ RATN (&n) = &n ∧ RATD (&n) = 1
[RATND_of_coprimes] Theorem
⊢ ∀p q.
gcd p q = 1 ∧ q ≠ 0 ⇒ RATN (&p / &q) = &p ∧ RATD (&p / &q) = q
[RATND_of_coprimes'] Theorem
⊢ ∀p q.
gcd p q = 1 ∧ q ≠ 0 ⇒ RATN (-&p / &q) = -&p ∧ RATD (-&p / &q) = q
[RATND_suff_eq] Theorem
⊢ gcd (Num n) d = 1 ∧ d ≠ 0 ⇒
RATN (rat_of_int n / &d) = n ∧ RATD (rat_of_int n / &d) = d
[RATN_DIV_RATD] Theorem
⊢ rat_of_int (RATN r) / &RATD r = r
[RATN_EQ0] Theorem
⊢ (RATN r = 0 ⇔ r = 0) ∧ (0 = RATN r ⇔ r = 0)
[RATN_LEAST] Theorem
⊢ ∀n' d'. r = rat_of_int n' / &d' ∧ 0 < d' ⇒ ABS (RATN r) ≤ ABS n'
[RATN_NEG] Theorem
⊢ RATN (-r) = -RATN r
[RATN_RATD_EQ_THM] Theorem
⊢ r = rat_of_int (RATN r) / &RATD r
[RATN_RATD_MULT] Theorem
⊢ r * &RATD r = rat_of_int (RATN r)
[RATN_RATD_RAT_OF_INT] Theorem
⊢ RATN (rat_of_int i) = i ∧ RATD (rat_of_int i) = 1
[RATN_SIGN] Theorem
⊢ (0 < RATN x ⇔ 0 < x) ∧ (0 ≤ RATN x ⇔ 0 ≤ x) ∧
(RATN x < 0 ⇔ x < 0) ∧ (RATN x ≤ 0 ⇔ x ≤ 0)
[RAT_0] Theorem
⊢ rat_0 = 0
[RAT_0LEQ_NMR] Theorem
⊢ ∀r1. 0 ≤ r1 ⇔ 0 ≤ rat_nmr r1
[RAT_0LES_0LEQ_ADD] Theorem
⊢ ∀r1 r2. 0 < r1 ⇒ 0 ≤ r2 ⇒ 0 < r1 + r2
[RAT_0LES_0LES_ADD] Theorem
⊢ ∀r1 r2. 0 < r1 ⇒ 0 < r2 ⇒ 0 < r1 + r2
[RAT_0LES_NMR] Theorem
⊢ ∀r1. 0 < r1 ⇔ 0 < rat_nmr r1
[RAT_1] Theorem
⊢ rat_1 = 1
[RAT_1_NOT_0] Theorem
⊢ 1 ≠ 0
[RAT_ABS_EQUIV] Theorem
⊢ ∀f1 f2. abs_rat f1 = abs_rat f2 ⇔ rat_equiv f1 f2
[RAT_ADD_ASSOC] Theorem
⊢ ∀a b c. a + (b + c) = a + b + c
[RAT_ADD_CALCULATE] Theorem
⊢ ∀f1 f2. abs_rat f1 + abs_rat f2 = abs_rat (frac_add f1 f2)
[RAT_ADD_COMM] Theorem
⊢ ∀a b. a + b = b + a
[RAT_ADD_CONG] Theorem
⊢ (∀x y.
abs_rat (frac_add (rep_rat (abs_rat x)) y) =
abs_rat (frac_add x y)) ∧
∀x y.
abs_rat (frac_add x (rep_rat (abs_rat y))) =
abs_rat (frac_add x y)
[RAT_ADD_CONG1] Theorem
⊢ ∀x y.
abs_rat (frac_add (rep_rat (abs_rat x)) y) =
abs_rat (frac_add x y)
[RAT_ADD_CONG2] Theorem
⊢ ∀x y.
abs_rat (frac_add x (rep_rat (abs_rat y))) =
abs_rat (frac_add x y)
[RAT_ADD_LID] Theorem
⊢ ∀a. 0 + a = a
[RAT_ADD_LINV] Theorem
⊢ ∀a. -a + a = 0
[RAT_ADD_MONO] Theorem
⊢ ∀a b c d. a ≤ b ∧ c ≤ d ⇒ a + c ≤ b + d
[RAT_ADD_NUM_CALCULATE] Theorem
⊢ (∀n m. &n + &m = &(n + m)) ∧
(∀n m. -&n + &m = if n ≤ m then &(m − n) else -&(n − m)) ∧
(∀n m. &n + -&m = if m ≤ n then &(n − m) else -&(m − n)) ∧
∀n m. -&n + -&m = -&(n + m)
[RAT_ADD_ONE_ONE] Theorem
⊢ ∀r1. ONE_ONE ($+ r1)
[RAT_ADD_RID] Theorem
⊢ ∀a. a + 0 = a
[RAT_ADD_RINV] Theorem
⊢ ∀a. a + -a = 0
[RAT_AINV_0] Theorem
⊢ -0 = 0
[RAT_AINV_ADD] Theorem
⊢ ∀r1 r2. -(r1 + r2) = -r1 + -r2
[RAT_AINV_AINV] Theorem
⊢ ∀r1. --r1 = r1
[RAT_AINV_CALCULATE] Theorem
⊢ ∀f1. -abs_rat f1 = abs_rat (frac_ainv f1)
[RAT_AINV_CONG] Theorem
⊢ ∀x. abs_rat (frac_ainv (rep_rat (abs_rat x))) =
abs_rat (frac_ainv x)
[RAT_AINV_EQ] Theorem
⊢ ∀r1 r2. -r1 = r2 ⇔ r1 = -r2
[RAT_AINV_EQ_NUM] Theorem
⊢ -x = &n ⇔ x = rat_of_int (-&n)
[RAT_AINV_LES] Theorem
⊢ ∀r1 r2. -r1 < r2 ⇔ -r2 < r1
[RAT_AINV_LMUL] Theorem
⊢ ∀r1 r2. -(r1 * r2) = -r1 * r2
[RAT_AINV_MINV] Theorem
⊢ ∀r1. r1 ≠ 0 ⇒ -rat_minv r1 = rat_minv (-r1)
[RAT_AINV_MUL_AINV] Theorem
⊢ -1 * r = -r
[RAT_AINV_ONE_ONE] Theorem
⊢ ONE_ONE numeric_negate
[RAT_AINV_RMUL] Theorem
⊢ ∀r1 r2. -(r1 * r2) = r1 * -r2
[RAT_AINV_SGN] Theorem
⊢ (0 < -r ⇔ r < 0) ∧ (-r < 0 ⇔ 0 < r)
[RAT_AINV_SUB] Theorem
⊢ ∀r1 r2. -(r1 − r2) = r2 − r1
[RAT_CONS_TO_NUM] Theorem
⊢ ∀n. &n // 1 = &n ∧ -&n // 1 = -&n
[RAT_DENSE_THM] Theorem
⊢ ∀r1 r3. r1 < r3 ⇒ ∃r2. r1 < r2 ∧ r2 < r3
[RAT_DIVDIV_ADD] Theorem
⊢ y ≠ 0 ∧ b ≠ 0 ⇒ x / y + a / b = (x * b + a * y) / (y * b)
[RAT_DIVDIV_MUL] Theorem
⊢ b ≠ 0 ∧ d ≠ 0 ⇒ a / b * (c / d) = a * c / (b * d)
[RAT_DIVMUL_CANCEL] Theorem
⊢ d ≠ 0 ⇒ n / d * d = n
[RAT_DIV_0] Theorem
⊢ 0 / x = 0
[RAT_DIV_1] Theorem
⊢ r / 1 = r
[RAT_DIV_AINV] Theorem
⊢ -(x / y) = -x / y
[RAT_DIV_CALCULATE] Theorem
⊢ ∀f1 f2.
frac_nmr f2 ≠ 0 ⇒
abs_rat f1 / abs_rat f2 = abs_rat (frac_div f1 f2)
[RAT_DIV_CONG] Theorem
⊢ (∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div (rep_rat (abs_rat x)) y) =
abs_rat (frac_div x y)) ∧
∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div x (rep_rat (abs_rat y))) =
abs_rat (frac_div x y)
[RAT_DIV_CONG1] Theorem
⊢ ∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div (rep_rat (abs_rat x)) y) =
abs_rat (frac_div x y)
[RAT_DIV_CONG2] Theorem
⊢ ∀x y.
frac_nmr y ≠ 0 ⇒
abs_rat (frac_div x (rep_rat (abs_rat y))) =
abs_rat (frac_div x y)
[RAT_DIV_EQ0] Theorem
⊢ d ≠ 0 ⇒ (n / d = 0 ⇔ n = 0) ∧ (0 = n / d ⇔ n = 0)
[RAT_DIV_INV] Theorem
⊢ r ≠ 0 ⇒ r / r = 1
[RAT_DIV_MINV] Theorem
⊢ x ≠ 0 ∧ y ≠ 0 ⇒ rat_minv (x / y) = y / x
[RAT_DIV_MULMINV] Theorem
⊢ ∀r1 r2. r1 / r2 = r1 * rat_minv r2
[RAT_DIV_NEG1] Theorem
⊢ r / -1 = -r
[RAT_EQ] Theorem
⊢ ∀f1 f2.
abs_rat f1 = abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 = frac_nmr f2 * frac_dnm f1
[RAT_EQ0_NMR] Theorem
⊢ ∀r1. r1 = 0 ⇔ rat_nmr r1 = 0
[RAT_EQUIV] Theorem
⊢ ∀f1 f2. rat_equiv f1 f2 ⇔ rat_equiv f1 = rat_equiv f2
[RAT_EQUIV_ALT] Theorem
⊢ ∀a. rat_equiv a =
(λx.
∃b c.
0 < b ∧ 0 < c ∧
frac_mul a (abs_frac (b,b)) =
frac_mul x (abs_frac (c,c)))
[RAT_EQUIV_NMR_GTZ_IFF] Theorem
⊢ ∀a b. rat_equiv a b ⇒ (frac_nmr a > 0 ⇔ frac_nmr b > 0)
[RAT_EQUIV_NMR_LTZ_IFF] Theorem
⊢ ∀a b. rat_equiv a b ⇒ (frac_nmr a < 0 ⇔ frac_nmr b < 0)
[RAT_EQUIV_NMR_Z_IFF] Theorem
⊢ ∀a b. rat_equiv a b ⇒ (frac_nmr a = 0 ⇔ frac_nmr b = 0)
[RAT_EQUIV_REF] Theorem
⊢ ∀a. rat_equiv a a
[RAT_EQUIV_SYM] Theorem
⊢ ∀a b. rat_equiv a b ⇔ rat_equiv b a
[RAT_EQUIV_TRANS] Theorem
⊢ ∀a b c. rat_equiv a b ∧ rat_equiv b c ⇒ rat_equiv a c
[RAT_EQ_0SUB] Theorem
⊢ ∀r1 r2. 0 = r1 − r2 ⇔ r1 = r2
[RAT_EQ_AINV] Theorem
⊢ ∀r1 r2. -r1 = -r2 ⇔ r1 = r2
[RAT_EQ_ALT] Theorem
⊢ ∀r1 r2. r1 = r2 ⇔ rat_nmr r1 * rat_dnm r2 = rat_nmr r2 * rat_dnm r1
[RAT_EQ_CALCULATE] Theorem
⊢ ∀f1 f2.
abs_rat f1 = abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 = frac_nmr f2 * frac_dnm f1
[RAT_EQ_LADD] Theorem
⊢ ∀r1 r2 r3. r3 + r1 = r3 + r2 ⇔ r1 = r2
[RAT_EQ_LMUL] Theorem
⊢ ∀r1 r2 r3. r3 ≠ 0 ⇒ (r3 * r1 = r3 * r2 ⇔ r1 = r2)
[RAT_EQ_NUM_CALCULATE] Theorem
⊢ (∀n m. &n = &m ⇔ n = m) ∧ (∀n m. &n = -&m ⇔ n = 0 ∧ m = 0) ∧
(∀n m. -&n = &m ⇔ n = 0 ∧ m = 0) ∧ ∀n m. -&n = -&m ⇔ n = m
[RAT_EQ_RADD] Theorem
⊢ ∀r1 r2 r3. r1 + r3 = r2 + r3 ⇔ r1 = r2
[RAT_EQ_RMUL] Theorem
⊢ ∀r1 r2 r3. r3 ≠ 0 ⇒ (r1 * r3 = r2 * r3 ⇔ r1 = r2)
[RAT_EQ_SUB0] Theorem
⊢ ∀r1 r2. r1 − r2 = 0 ⇔ r1 = r2
[RAT_EXPN_0] Theorem
⊢ ∀n. (0 < n ⇒ expn 0 n = 0) ∧ expn 0 (SUC n) = 0
[RAT_EXPN_1] Theorem
⊢ expn 1 n = 1
[RAT_EXPN_ADD] Theorem
⊢ expn r (a + b) = expn r a * expn r b
[RAT_EXPN_CALCULATE] Theorem
⊢ (expn r n = 0 ⇔ r = 0 ∧ n ≠ 0) ∧ expn 1 n = 1 ∧ expn r 0 = 1 ∧
expn r 1 = r
[RAT_EXPN_DIV] Theorem
⊢ b ≠ 0 ⇒ expn (a / b) n = expn a n / expn b n
[RAT_EXPN_EQ0] Theorem
⊢ expn r n = 0 ⇔ r = 0 ∧ n ≠ 0
[RAT_EXPN_EQ_1] Theorem
⊢ expn r n = 1 ⇔ r = 1 ∨ r = -1 ∧ EVEN n ∨ n = 0
[RAT_EXPN_EQ_1_NEG] Theorem
⊢ r < 0 ⇒ (expn r n = 1 ⇔ r = -1 ∧ EVEN n ∨ n = 0)
[RAT_EXPN_EQ_1_POS] Theorem
⊢ 0 < r ⇒ (expn r n = 1 ⇔ r = 1 ∨ n = 0)
[RAT_EXPN_INJ] Theorem
⊢ r ≠ 0 ∧ r ≠ 1 ∧ r ≠ -1 ⇒ (expn r i = expn r j ⇔ i = j)
[RAT_EXPN_LT] Theorem
⊢ 0 < p ∧ 0 < q ∧ 0 < n ⇒ (expn p n < expn q n ⇔ p < q)
[RAT_EXPN_MINUS1] Theorem
⊢ expn (-1) n = if EVEN n then 1 else -1
[RAT_EXPN_MUL] Theorem
⊢ expn r (a * b) = expn (expn r a) b
[RAT_EXPN_NEG] Theorem
⊢ expn (-r) n = if EVEN n then expn r n else -expn r n
[RAT_EXPN_NEG_LT_ZERO] Theorem
⊢ r < 0 ⇒ (0 < expn r n ⇔ EVEN n) ∧ (expn r n < 0 ⇔ ODD n)
[RAT_EXPN_PROD] Theorem
⊢ expn (a * b) n = expn a n * expn b n
[RAT_EXPN_RAT_MINV] Theorem
⊢ r ≠ 0 ⇒ expn (rat_minv r) n = rat_minv (expn r n)
[RAT_EXPN_R_NONZERO] Theorem
⊢ r ≠ 0 ⇒ expn r n ≠ 0
[RAT_EXPN_R_POS] Theorem
⊢ 0 < r ⇒ 0 < expn r n
[RAT_EXPN_SUB] Theorem
⊢ r ≠ 0 ∧ b ≤ a ⇒ expn r (a − b) = expn r a / expn r b
[RAT_EXPN_TO_0] Theorem
⊢ expn r 0 = 1
[RAT_EXPN_TO_1] Theorem
⊢ expn r 1 = r
[RAT_EXP_0] Theorem
⊢ 0 < i ⇒ 0 ** i = 0
[RAT_EXP_1] Theorem
⊢ 1 ** i = 1
[RAT_EXP_ADD] Theorem
⊢ r ≠ 0 ∨ 0 ≤ a ∧ 0 ≤ b ⇒ r ** (a + b) = r ** a * r ** b
[RAT_EXP_CALCULATE] Theorem
⊢ r ** 0 = 1 ∧ r ** 1 = r ∧ 1 ** i = 1 ∧ r ** &n = expn r n ∧
r ** -&n = rat_minv (expn r n)
[RAT_EXP_DIV] Theorem
⊢ b ≠ 0 ∧ (a ≠ 0 ∨ 0 ≤ i) ⇒ (a / b) ** i = a ** i / b ** i
[RAT_EXP_INJ] Theorem
⊢ ∀r i j. r ≠ 0 ∧ r ≠ 1 ∧ r ≠ -1 ⇒ (r ** i = r ** j ⇔ i = j)
[RAT_EXP_LE] Theorem
⊢ ∀r i j. 1 < r ⇒ (r ** i ≤ r ** j ⇔ i ≤ j)
[RAT_EXP_LT] Theorem
⊢ 0 < r ∧ 0 < q ∧ 0 < i ⇒ (r ** i < q ** i ⇔ r < q)
[RAT_EXP_LT2] Theorem
⊢ ∀r i j. 1 < r ⇒ (r ** i < r ** j ⇔ i < j)
[RAT_EXP_MINUS1] Theorem
⊢ -1 ** i = if i % 2 = 0 then 1 else -1
[RAT_EXP_MUL] Theorem
⊢ r ≠ 0 ∨ 0 ≤ a ∧ 0 ≤ b ⇒ r ** (a * b) = (r ** a) ** b
[RAT_EXP_NEG] Theorem
⊢ r ≠ 0 ∨ 0 < i ⇒ -r ** i = if i % 2 = 0 then r ** i else -(r ** i)
[RAT_EXP_NEG_INT] Theorem
⊢ r ** -&n = rat_minv (expn r n)
[RAT_EXP_NUM] Theorem
⊢ r ** &n = expn r n
[RAT_EXP_PROD] Theorem
⊢ a ≠ 0 ∧ b ≠ 0 ∨ 0 ≤ i ⇒ (a * b) ** i = a ** i * b ** i
[RAT_EXP_RAT_MINV] Theorem
⊢ r ≠ 0 ⇒ rat_minv r ** i = rat_minv (r ** i)
[RAT_EXP_R_NONZERO] Theorem
⊢ r ≠ 0 ⇒ r ** i ≠ 0
[RAT_EXP_R_POS] Theorem
⊢ 0 < r ⇒ 0 < r ** i
[RAT_EXP_SUB] Theorem
⊢ ∀r i j. r ≠ 0 ⇒ r ** (i − j) = r ** i / r ** j
[RAT_EXP_TO_0] Theorem
⊢ r ** 0 = 1
[RAT_EXP_TO_NEG] Theorem
⊢ r ≠ 0 ⇒ r ** -i = rat_minv (r ** i)
[RAT_LDISTRIB] Theorem
⊢ ∀a b c. c * (a + b) = c * a + c * b
[RAT_LDIV_EQ] Theorem
⊢ ∀r1 r2 r3. r2 ≠ 0 ⇒ (r1 / r2 = r3 ⇔ r1 = r2 * r3)
[RAT_LDIV_LEQ_NEG] Theorem
⊢ ∀r1 r2 r3. r2 < 0 ⇒ (r1 / r2 ≤ r3 ⇔ r2 * r3 ≤ r1)
[RAT_LDIV_LEQ_POS] Theorem
⊢ ∀r1 r2 r3. 0 < r2 ⇒ (r1 / r2 ≤ r3 ⇔ r1 ≤ r2 * r3)
[RAT_LDIV_LES_NEG] Theorem
⊢ ∀r1 r2 r3. r2 < 0 ⇒ (r1 / r2 < r3 ⇔ r2 * r3 < r1)
[RAT_LDIV_LES_POS] Theorem
⊢ ∀r1 r2 r3. 0 < r2 ⇒ (r1 / r2 < r3 ⇔ r1 < r2 * r3)
[RAT_LEQ0_NMR] Theorem
⊢ ∀r1. r1 ≤ 0 ⇔ rat_nmr r1 ≤ 0
[RAT_LEQ_ANTISYM] Theorem
⊢ ∀r1 r2. r1 ≤ r2 ∧ r2 ≤ r1 ⇒ r1 = r2
[RAT_LEQ_CALCULATE] Theorem
⊢ ∀f1 f2.
abs_rat f1 ≤ abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 ≤ frac_nmr f2 * frac_dnm f1
[RAT_LEQ_LADD] Theorem
⊢ ∀r1 r2 r3. r3 + r1 ≤ r3 + r2 ⇔ r1 ≤ r2
[RAT_LEQ_LES] Theorem
⊢ ∀r1 r2. ¬(r2 < r1) ⇔ r1 ≤ r2
[RAT_LEQ_LES_TRANS] Theorem
⊢ ∀a b c. a ≤ b ∧ b < c ⇒ a < c
[RAT_LEQ_MUL] Theorem
⊢ 0 ≤ a ∧ a ≤ b ∧ 0 ≤ c ∧ c ≤ d ⇒ a * c ≤ b * d
[RAT_LEQ_RADD] Theorem
⊢ ∀r1 r2 r3. r1 + r3 ≤ r2 + r3 ⇔ r1 ≤ r2
[RAT_LEQ_REF] Theorem
⊢ ∀r1. r1 ≤ r1
[RAT_LEQ_TRANS] Theorem
⊢ ∀r1 r2 r3. r1 ≤ r2 ∧ r2 ≤ r3 ⇒ r1 ≤ r3
[RAT_LES0_LEQ0_ADD] Theorem
⊢ ∀r1 r2. r1 < 0 ⇒ r2 ≤ 0 ⇒ r1 + r2 < 0
[RAT_LES0_LES0_ADD] Theorem
⊢ ∀r1 r2. r1 < 0 ⇒ r2 < 0 ⇒ r1 + r2 < 0
[RAT_LES0_NMR] Theorem
⊢ ∀r1. r1 < 0 ⇔ rat_nmr r1 < 0
[RAT_LES_01] Theorem
⊢ 0 < 1
[RAT_LES_0SUB] Theorem
⊢ ∀r1 r2. 0 < r1 − r2 ⇔ r2 < r1
[RAT_LES_AINV] Theorem
⊢ ∀r1 r2. -r1 < -r2 ⇔ r2 < r1
[RAT_LES_AINV2] Theorem
⊢ ∀r1 r2. r1 < -r2 ⇔ r2 < -r1
[RAT_LES_ANTISYM] Theorem
⊢ ∀r1 r2. r1 < r2 ⇒ ¬(r2 < r1)
[RAT_LES_CALCULATE] Theorem
⊢ ∀f1 f2.
abs_rat f1 < abs_rat f2 ⇔
frac_nmr f1 * frac_dnm f2 < frac_nmr f2 * frac_dnm f1
[RAT_LES_IMP_LEQ] Theorem
⊢ ∀r1 r2. r1 < r2 ⇒ r1 ≤ r2
[RAT_LES_IMP_NEQ] Theorem
⊢ ∀r1 r2. r1 < r2 ⇒ r1 ≠ r2
[RAT_LES_LADD] Theorem
⊢ ∀r1 r2 r3. r3 + r1 < r3 + r2 ⇔ r1 < r2
[RAT_LES_LEQ] Theorem
⊢ ∀r1 r2. ¬(r2 ≤ r1) ⇔ r1 < r2
[RAT_LES_LEQ2] Theorem
⊢ ∀r1 r2. r1 < r2 ⇔ r1 ≤ r2 ∧ ¬(r2 ≤ r1)
[RAT_LES_LEQ_TRANS] Theorem
⊢ ∀a b c. a < b ∧ b ≤ c ⇒ a < c
[RAT_LES_LMUL_NEG] Theorem
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r3 * r2 < r3 * r1 ⇔ r1 < r2)
[RAT_LES_LMUL_POS] Theorem
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r3 * r1 < r3 * r2 ⇔ r1 < r2)
[RAT_LES_MUL_GTR_1] Theorem
⊢ 0 < r ∧ 1 < q ⇒ r < r * q
[RAT_LES_RADD] Theorem
⊢ ∀r1 r2 r3. r1 + r3 < r2 + r3 ⇔ r1 < r2
[RAT_LES_REF] Theorem
⊢ ∀r1. ¬(r1 < r1)
[RAT_LES_RMUL_NEG] Theorem
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r2 * r3 < r1 * r3 ⇔ r1 < r2)
[RAT_LES_RMUL_POS] Theorem
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r1 * r3 < r2 * r3 ⇔ r1 < r2)
[RAT_LES_SUB0] Theorem
⊢ ∀r1 r2. r1 − r2 < 0 ⇔ r1 < r2
[RAT_LES_TOTAL] Theorem
⊢ ∀r1 r2. r1 < r2 ∨ r1 = r2 ∨ r2 < r1
[RAT_LES_TRANS] Theorem
⊢ ∀r1 r2 r3. r1 < r2 ∧ r2 < r3 ⇒ r1 < r3
[RAT_LE_NUM_CALCULATE] Theorem
⊢ (&a ≤ &b ⇔ a ≤ b) ∧ (-&m ≤ &n ⇔ T) ∧ (&m ≤ -&n ⇔ m = 0 ∧ n = 0) ∧
(-&m ≤ -&n ⇔ n ≤ m)
[RAT_LSUB_EQ] Theorem
⊢ ∀r1 r2 r3. r1 − r2 = r3 ⇔ r1 = r2 + r3
[RAT_LSUB_LEQ] Theorem
⊢ ∀r1 r2 r3. r1 − r2 ≤ r3 ⇔ r1 ≤ r2 + r3
[RAT_LSUB_LES] Theorem
⊢ ∀r1 r2 r3. r1 − r2 < r3 ⇔ r1 < r2 + r3
[RAT_LT_LE_NEQ] Theorem
⊢ a < b ⇔ a ≤ b ∧ a ≠ b
[RAT_LT_MUL] Theorem
⊢ 0 < a ∧ a < c ∧ 0 < b ∧ b < d ⇒ a * b < c * d
[RAT_LT_NUM_CALCULATE] Theorem
⊢ (&a < &b ⇔ a < b) ∧ (-&m < &n ⇔ 0 < m ∨ 0 < n) ∧ (&m < -&n ⇔ F) ∧
(-&m < -&n ⇔ n < m)
[RAT_MINV_1] Theorem
⊢ rat_minv 1 = 1
[RAT_MINV_CALCULATE] Theorem
⊢ ∀f1.
0 ≠ frac_nmr f1 ⇒ rat_minv (abs_rat f1) = abs_rat (frac_minv f1)
[RAT_MINV_CONG] Theorem
⊢ ∀x. frac_nmr x ≠ 0 ⇒
abs_rat (frac_minv (rep_rat (abs_rat x))) =
abs_rat (frac_minv x)
[RAT_MINV_DIV] Theorem
⊢ a ≠ 0 ∧ b ≠ 0 ⇒ rat_minv (a / b) = rat_minv a / rat_minv b
[RAT_MINV_EQ_0] Theorem
⊢ r ≠ 0 ⇒ rat_minv r ≠ 0
[RAT_MINV_ID] Theorem
⊢ r ≠ 0 ⇒ (rat_minv r = r ⇔ r = 1 ∨ r = -1 ∨ r = 0)
[RAT_MINV_LES] Theorem
⊢ ∀r1.
r1 ≠ 0 ⇒ (rat_minv r1 < 0 ⇔ r1 < 0) ∧ (0 < rat_minv r1 ⇔ 0 < r1)
[RAT_MINV_LT_1] Theorem
⊢ ∀r. 0 < r ⇒ (1 < rat_minv r ⇔ r < 1) ∧ (rat_minv r < 1 ⇔ 1 < r)
[RAT_MINV_LT_MINUS1] Theorem
⊢ ∀r. r < 0 ⇒ (-1 < rat_minv r ⇔ r < -1) ∧ (rat_minv r < -1 ⇔ -1 < r)
[RAT_MINV_MUL] Theorem
⊢ a ≠ 0 ∧ b ≠ 0 ⇒ rat_minv (a * b) = rat_minv a * rat_minv b
[RAT_MINV_RATND] Theorem
⊢ r ≠ 0 ⇒
rat_minv r =
rat_of_int (RAT_SGN r) * &RATD r / rat_of_int (ABS (RATN r))
[RAT_MINV_RAT_MINV] Theorem
⊢ r ≠ 0 ⇒ rat_minv (rat_minv r) = r
[RAT_MUL_ASSOC] Theorem
⊢ ∀a b c. a * (b * c) = a * b * c
[RAT_MUL_CALCULATE] Theorem
⊢ ∀f1 f2. abs_rat f1 * abs_rat f2 = abs_rat (frac_mul f1 f2)
[RAT_MUL_COMM] Theorem
⊢ ∀a b. a * b = b * a
[RAT_MUL_CONG] Theorem
⊢ (∀x y.
abs_rat (frac_mul (rep_rat (abs_rat x)) y) =
abs_rat (frac_mul x y)) ∧
∀x y.
abs_rat (frac_mul x (rep_rat (abs_rat y))) =
abs_rat (frac_mul x y)
[RAT_MUL_CONG1] Theorem
⊢ ∀x y.
abs_rat (frac_mul (rep_rat (abs_rat x)) y) =
abs_rat (frac_mul x y)
[RAT_MUL_CONG2] Theorem
⊢ ∀x y.
abs_rat (frac_mul x (rep_rat (abs_rat y))) =
abs_rat (frac_mul x y)
[RAT_MUL_LID] Theorem
⊢ ∀a. 1 * a = a
[RAT_MUL_LINV] Theorem
⊢ ∀a. a ≠ 0 ⇒ rat_minv a * a = 1
[RAT_MUL_LZERO] Theorem
⊢ ∀r1. 0 * r1 = 0
[RAT_MUL_NEG] Theorem
⊢ -a * -b = a * b
[RAT_MUL_NUM_CALCULATE] Theorem
⊢ (∀n m. &n * &m = &(n * m)) ∧ (∀n m. -&n * &m = -&(n * m)) ∧
(∀n m. &n * -&m = -&(n * m)) ∧ ∀n m. -&n * -&m = &(n * m)
[RAT_MUL_ONE_ONE] Theorem
⊢ ∀r1. r1 ≠ 0 ⇔ ONE_ONE ($* r1)
[RAT_MUL_RID] Theorem
⊢ ∀a. a * 1 = a
[RAT_MUL_RINV] Theorem
⊢ ∀a. a ≠ 0 ⇒ a * rat_minv a = 1
[RAT_MUL_RZERO] Theorem
⊢ ∀r1. r1 * 0 = 0
[RAT_MUL_SIGN_CASES] Theorem
⊢ ∀p q.
(0 < p * q ⇔ 0 < p ∧ 0 < q ∨ p < 0 ∧ q < 0) ∧
(p * q < 0 ⇔ 0 < p ∧ q < 0 ∨ p < 0 ∧ 0 < q)
[RAT_NMRDNM_EQ] Theorem
⊢ abs_rat (abs_frac (frac_nmr f1,frac_dnm f1)) = 1 ⇔
frac_nmr f1 = frac_dnm f1
[RAT_NMREQ0_CONG] Theorem
⊢ ∀f1. frac_nmr (rep_rat (abs_rat f1)) = 0 ⇔ frac_nmr f1 = 0
[RAT_NMRGT0_CONG] Theorem
⊢ ∀f1. 0 < frac_nmr (rep_rat (abs_rat f1)) ⇔ 0 < frac_nmr f1
[RAT_NMRLT0_CONG] Theorem
⊢ ∀f1. frac_nmr (rep_rat (abs_rat f1)) < 0 ⇔ frac_nmr f1 < 0
[RAT_NMR_Z_IFF_EQUIV] Theorem
⊢ ∀a b. frac_nmr a = 0 ⇒ (rat_equiv a b ⇔ frac_nmr b = 0)
[RAT_NO_IDDIV] Theorem
⊢ ∀r1 r2. r1 * r2 = r2 ⇔ r1 = 1 ∨ r2 = 0
[RAT_NO_ZERODIV] Theorem
⊢ ∀r1 r2. r1 = 0 ∨ r2 = 0 ⇔ r1 * r2 = 0
[RAT_NO_ZERODIV_NEG] Theorem
⊢ ∀r1 r2. r1 * r2 ≠ 0 ⇔ r1 ≠ 0 ∧ r2 ≠ 0
[RAT_NO_ZERODIV_THM] Theorem
⊢ ∀r1 r2. r1 * r2 = 0 ⇔ r1 = 0 ∨ r2 = 0
[RAT_OF_INT_CALCULATE] Theorem
⊢ ∀i. rat_of_int i = abs_rat (abs_frac (i,1))
[RAT_OF_NUM] Theorem
⊢ ∀n. 0 = rat_0 ∧ ∀n. &SUC n = &n + rat_1
[RAT_OF_NUM_CALCULATE] Theorem
⊢ ∀n1. &n1 = abs_rat (abs_frac (&n1,1))
[RAT_OF_NUM_LEQ] Theorem
⊢ &a ≤ &b ⇔ a ≤ b
[RAT_OF_NUM_LES] Theorem
⊢ &a < &b ⇔ a < b
[RAT_RDISTRIB] Theorem
⊢ ∀a b c. (a + b) * c = a * c + b * c
[RAT_RDIV_EQ] Theorem
⊢ ∀r1 r2 r3. r3 ≠ 0 ⇒ (r1 = r2 / r3 ⇔ r1 * r3 = r2)
[RAT_RDIV_LEQ_NEG] Theorem
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r1 ≤ r2 / r3 ⇔ r2 ≤ r1 * r3)
[RAT_RDIV_LEQ_POS] Theorem
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r1 ≤ r2 / r3 ⇔ r1 * r3 ≤ r2)
[RAT_RDIV_LES_NEG] Theorem
⊢ ∀r1 r2 r3. r3 < 0 ⇒ (r1 < r2 / r3 ⇔ r2 < r1 * r3)
[RAT_RDIV_LES_POS] Theorem
⊢ ∀r1 r2 r3. 0 < r3 ⇒ (r1 < r2 / r3 ⇔ r1 * r3 < r2)
[RAT_RSUB_EQ] Theorem
⊢ ∀r1 r2 r3. r1 = r2 − r3 ⇔ r1 + r3 = r2
[RAT_RSUB_LEQ] Theorem
⊢ ∀r1 r2 r3. r1 ≤ r2 − r3 ⇔ r1 + r3 ≤ r2
[RAT_RSUB_LES] Theorem
⊢ ∀r1 r2 r3. r1 < r2 − r3 ⇔ r1 + r3 < r2
[RAT_SAVE] Theorem
⊢ ∀r1. ∃a1 b1. r1 = abs_rat (frac_save a1 b1)
[RAT_SAVE_MINV] Theorem
⊢ ∀a1 b1.
abs_rat (frac_save a1 b1) ≠ 0 ⇒
rat_minv (abs_rat (frac_save a1 b1)) =
abs_rat (frac_save (SGN a1 * (&b1 + 1)) (Num (ABS a1 − 1)))
[RAT_SAVE_NUM] Theorem
⊢ ∀n. &n = abs_rat (frac_save (&n) 0)
[RAT_SAVE_TO_CONS] Theorem
⊢ ∀a1 b1. abs_rat (frac_save a1 b1) = a1 // (&b1 + 1)
[RAT_SGN_0] Theorem
⊢ RAT_SGN 0 = 0
[RAT_SGN_AINV] Theorem
⊢ ∀r1. -RAT_SGN (-r1) = RAT_SGN r1
[RAT_SGN_AINV'] Theorem
⊢ RAT_SGN (-r) = -RAT_SGN r
[RAT_SGN_AINV_RWT] Theorem
⊢ RAT_SGN (-r) = -RAT_SGN r
[RAT_SGN_ALT] Theorem
⊢ RAT_SGN r = SGN (RATN r)
[RAT_SGN_CALCULATE] Theorem
⊢ RAT_SGN (abs_rat f1) = frac_sgn f1
[RAT_SGN_CLAUSES] Theorem
⊢ ∀r1.
(RAT_SGN r1 = -1 ⇔ r1 < 0) ∧ (RAT_SGN r1 = 0 ⇔ r1 = 0) ∧
(RAT_SGN r1 = 1 ⇔ r1 > 0)
[RAT_SGN_COMPLEMENT] Theorem
⊢ ∀r1.
(RAT_SGN r1 ≠ -1 ⇔ RAT_SGN r1 = 0 ∨ RAT_SGN r1 = 1) ∧
(RAT_SGN r1 ≠ 0 ⇔ RAT_SGN r1 = -1 ∨ RAT_SGN r1 = 1) ∧
(RAT_SGN r1 ≠ 1 ⇔ RAT_SGN r1 = -1 ∨ RAT_SGN r1 = 0)
[RAT_SGN_CONG] Theorem
⊢ ∀f1. frac_sgn (rep_rat (abs_rat f1)) = frac_sgn f1
[RAT_SGN_DIV] Theorem
⊢ d ≠ 0 ⇒ RAT_SGN (n / d) = RAT_SGN n * RAT_SGN d
[RAT_SGN_EQ0] Theorem
⊢ (RAT_SGN r = 0 ⇔ r = 0) ∧ (0 = RAT_SGN r ⇔ r = 0)
[RAT_SGN_MINV] Theorem
⊢ ∀r1. r1 ≠ 0 ⇒ RAT_SGN (rat_minv r1) = RAT_SGN r1
[RAT_SGN_MUL] Theorem
⊢ ∀r1 r2. RAT_SGN (r1 * r2) = RAT_SGN r1 * RAT_SGN r2
[RAT_SGN_NEG] Theorem
⊢ RAT_SGN r = -1 ⇔ r < 0
[RAT_SGN_NUM_BITs] Theorem
⊢ RAT_SGN (&NUMERAL (BIT1 n)) = 1 ∧ RAT_SGN (&NUMERAL (BIT2 n)) = 1
[RAT_SGN_NUM_COND] Theorem
⊢ RAT_SGN (&n) = if n = 0 then 0 else 1
[RAT_SGN_POS] Theorem
⊢ RAT_SGN r = 1 ⇔ 0 < r
[RAT_SGN_TOTAL] Theorem
⊢ ∀r1. RAT_SGN r1 = -1 ∨ RAT_SGN r1 = 0 ∨ RAT_SGN r1 = 1
[RAT_SUB_ADDAINV] Theorem
⊢ ∀r1 r2. r1 − r2 = r1 + -r2
[RAT_SUB_CALCULATE] Theorem
⊢ ∀f1 f2. abs_rat f1 − abs_rat f2 = abs_rat (frac_sub f1 f2)
[RAT_SUB_CONG] Theorem
⊢ (∀x y.
abs_rat (frac_sub (rep_rat (abs_rat x)) y) =
abs_rat (frac_sub x y)) ∧
∀x y.
abs_rat (frac_sub x (rep_rat (abs_rat y))) =
abs_rat (frac_sub x y)
[RAT_SUB_CONG1] Theorem
⊢ ∀x y.
abs_rat (frac_sub (rep_rat (abs_rat x)) y) =
abs_rat (frac_sub x y)
[RAT_SUB_CONG2] Theorem
⊢ ∀x y.
abs_rat (frac_sub x (rep_rat (abs_rat y))) =
abs_rat (frac_sub x y)
[RAT_SUB_ID] Theorem
⊢ ∀r. r − r = 0
[RAT_SUB_LDISTRIB] Theorem
⊢ ∀a b c. c * (a − b) = c * a − c * b
[RAT_SUB_LID] Theorem
⊢ ∀r1. 0 − r1 = -r1
[RAT_SUB_RDISTRIB] Theorem
⊢ ∀a b c. (a − b) * c = a * c − b * c
[RAT_SUB_RID] Theorem
⊢ ∀r1. r1 − 0 = r1
[RAT_TIMES2] Theorem
⊢ 2 * x = x + x
[RDIV_MUL_OUT] Theorem
⊢ r1 * (r2 / r3) = r1 * r2 / r3
[div_gcd_correct] Theorem
⊢ div_gcd a b = (n,d) ∧ b ≠ 0 ⇒
rat_of_int a / &b = rat_of_int n / &d ∧
RATN (rat_of_int a / &b) = n ∧ RATD (rat_of_int a / &b) = d
[div_gcd_reduces] Theorem
⊢ div_gcd a b = (n,d) ∧ b ≠ 0 ⇒
d ≠ 0 ∧ gcd (Num n) d = 1 ∧ a * &d = n * &b
[frac_dnm_EQ0] Theorem
⊢ frac_dnm f ≠ 0
[gcd_RATND] Theorem
⊢ gcd (Num (RATN r)) (RATD r) = 1
[rat_0] Theorem
⊢ 0 = abs_rat frac_0
[rat_1] Theorem
⊢ 1 = abs_rat frac_1
[rat_ABS_REP_CLASS] Theorem
⊢ (∀a. abs_rat_CLASS (rep_rat_CLASS a) = a) ∧
∀c. (∃r. rat_equiv r r ∧ c = rat_equiv r) ⇔
rep_rat_CLASS (abs_rat_CLASS c) = c
[rat_QUOTIENT] Theorem
⊢ QUOTIENT rat_equiv abs_rat rep_rat
[rat_def] Theorem
⊢ QUOTIENT rat_equiv abs_rat rep_rat
[rat_equiv_rep_abs] Theorem
⊢ rat_equiv (rep_rat (abs_rat f)) f
[rat_equiv_reps] Theorem
⊢ rat_equiv (rep_rat r1) (rep_rat r2) ⇔ r1 = r2
[rat_expn_compute] Theorem
⊢ (∀r. expn r 0 = 1) ∧
(∀r n.
expn r (NUMERAL (BIT1 n)) = r * expn r (NUMERAL (BIT1 n) − 1)) ∧
∀r n. expn r (NUMERAL (BIT2 n)) = r * expn r (NUMERAL (BIT1 n))
[rat_of_int_11] Theorem
⊢ rat_of_int i1 = rat_of_int i2 ⇔ i1 = i2
[rat_of_int_ADD] Theorem
⊢ rat_of_int x + rat_of_int y = rat_of_int (x + y)
[rat_of_int_EQN] Theorem
⊢ (rat_of_int i = &n ⇔ i = &n) ∧ (&n = rat_of_int i ⇔ i = &n)
[rat_of_int_LE] Theorem
⊢ rat_of_int i ≤ rat_of_int j ⇔ i ≤ j
[rat_of_int_LT] Theorem
⊢ rat_of_int i < rat_of_int j ⇔ i < j
[rat_of_int_MUL] Theorem
⊢ rat_of_int x * rat_of_int y = rat_of_int (x * y)
[rat_of_int_ainv] Theorem
⊢ rat_of_int (-i) = -rat_of_int i
[rat_of_int_nmrdnm] Theorem
⊢ rat_of_int (frac_nmr (rep_rat q)) /
rat_of_int (frac_dnm (rep_rat q)) =
q
[rat_of_int_of_num] Theorem
⊢ rat_of_int (&x) = &x
[rat_of_num_compute] Theorem
⊢ 0 = rat_0 ∧ &SUC 0 = rat_1 ∧
(∀n. &SUC (NUMERAL (BIT1 n)) = &NUMERAL (BIT1 n) + rat_1) ∧
∀n. &SUC (NUMERAL (BIT2 n)) = &NUMERAL (BIT2 n) + rat_1
[rat_of_num_def] Theorem
⊢ 0 = rat_0 ∧ &SUC 0 = rat_1 ∧ ∀n. &SUC (SUC n) = &SUC n + rat_1
[rat_of_num_ind] Theorem
⊢ ∀P. P 0 ∧ P (SUC 0) ∧ (∀n. P (SUC n) ⇒ P (SUC (SUC n))) ⇒ ∀v. P v
[rat_type_thm] Theorem
⊢ (∀a. abs_rat (rep_rat a) = a) ∧
∀r s. rat_equiv r s ⇔ abs_rat r = abs_rat s
[rep_rat_of_int] Theorem
⊢ ∀i. ∃j. 0 < j ∧ rep_rat (rat_of_int i) = abs_frac (j * i,j)
*)
end
HOL 4, Trindemossen-1