Structure oneTheory
signature oneTheory =
sig
type thm = Thm.thm
(* Definitions *)
val one_DEF : thm
val one_TY_DEF : thm
val one_case_def : thm
(* Theorems *)
val EXISTS_ONE_FN : thm
val FORALL_ONE : thm
val FORALL_ONE_FN : thm
val one : thm
val one_Axiom : thm
val one_axiom : thm
val one_case_thm : thm
val one_induction : thm
val one_prim_rec : thm
val one_grammars : type_grammar.grammar * term_grammar.grammar
(*
[combin] Parent theory of "one"
[sat] Parent theory of "one"
[one_DEF] Definition
⊢ () = @x. T
[one_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION (λb. b) rep
[one_case_def] Definition
⊢ ∀u x. one_CASE u x = x
[EXISTS_ONE_FN] Theorem
⊢ (∃f. P f) ⇔ ∃f. P (λx u. f x)
[FORALL_ONE] Theorem
⊢ (∀x. P x) ⇔ P ()
[FORALL_ONE_FN] Theorem
⊢ (∀uf. P uf) ⇔ ∀a. P (λu. a)
[one] Theorem
⊢ ∀v. v = ()
[one_Axiom] Theorem
⊢ ∀e. ∃!fn. fn () = e
[one_axiom] Theorem
⊢ ∀f g. f = g
[one_case_thm] Theorem
⊢ ∀x. one_CASE () x = x
[one_induction] Theorem
⊢ ∀P. P () ⇒ ∀x. P x
[one_prim_rec] Theorem
⊢ ∀e. ∃fn. fn () = e
*)
end
HOL 4, Trindemossen-1