Structure martingaleTheory


Source File Identifier index Theory binding index

signature martingaleTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val fcp_cross_def : thm
    val fcp_prod_def : thm
    val fcp_sigma_def : thm
    val filtered_measure_space_def : thm
    val filtration_def : thm
    val general_cross_def : thm
    val general_prod_def : thm
    val general_sigma_def : thm
    val infty_sigma_algebra_def : thm
    val lborel_2d_def : thm
    val lp_space_def : thm
    val martingale_def : thm
    val pair_operation_def : thm
    val prod_measure_def : thm
    val prod_measure_space_def : thm
    val seminorm_def : thm
    val sigma_finite_filtered_measure_space_def : thm
    val sub_martingale_def : thm
    val sub_sigma_algebra_def : thm
    val super_martingale_def : thm
  
  (*  Theorems  *)
    val CROSS_ALT : thm
    val Cauchy_Schwarz_inequality : thm
    val Cauchy_Schwarz_inequality' : thm
    val EXISTENCE_OF_PROD_MEASURE : thm
    val EXISTENCE_OF_PROD_MEASURE' : thm
    val FCP_BIGUNION_CROSS : thm
    val FCP_CROSS_BIGUNION : thm
    val FCP_CROSS_DIFF : thm
    val FCP_CROSS_DIFF' : thm
    val FCP_INTER_CROSS : thm
    val FCP_SUBSET_CROSS : thm
    val FILTRATION : thm
    val FILTRATION_BOUNDED : thm
    val FILTRATION_MONO : thm
    val FILTRATION_SUBSETS : thm
    val FUBINI : thm
    val FUBINI' : thm
    val Fubini : thm
    val Fubini' : thm
    val Hoelder_inequality : thm
    val Hoelder_inequality' : thm
    val INDICATOR_FN_FCP_CROSS : thm
    val INFTY_SIGMA_ALGEBRA_BOUNDED : thm
    val INFTY_SIGMA_ALGEBRA_MAXIMAL : thm
    val IN_FCP_CROSS : thm
    val IN_FCP_PROD : thm
    val IN_MEASURABLE_BOREL_FROM_PROD_SIGMA : thm
    val IN_general_cross : thm
    val IN_general_prod : thm
    val L1_space_alt_integrable : thm
    val L2_space_alt_integrable_square : thm
    val LIM_SEQUENTIALLY_CESARO : thm
    val LIM_SEQUENTIALLY_real_normal : thm
    val MARTINGALE_EQ_SUB_SUPER : thm
    val Minkowski_inequality : thm
    val Minkowski_inequality' : thm
    val PROD_SIGMA_OF_GENERATOR : thm
    val SIGMA_FINITE_FILTERED_MEASURE_SPACE : thm
    val SUB_SIGMA_ALGEBRA_ANTISYM : thm
    val SUB_SIGMA_ALGEBRA_MEASURE_SPACE : thm
    val SUB_SIGMA_ALGEBRA_ORDER : thm
    val SUB_SIGMA_ALGEBRA_REFL : thm
    val SUB_SIGMA_ALGEBRA_TRANS : thm
    val TONELLI : thm
    val UNIQUENESS_OF_PROD_MEASURE : thm
    val UNIQUENESS_OF_PROD_MEASURE' : thm
    val exhausting_sequence_CROSS : thm
    val exhausting_sequence_cross : thm
    val exhausting_sequence_general_cross : thm
    val existence_of_prod_measure : thm
    val existence_of_prod_measure_general : thm
    val ext_liminf_imp_subseq : thm
    val ext_liminf_le_subseq : thm
    val ext_limsup_imp_subseq : thm
    val ext_limsup_le_subseq : thm
    val ext_limsup_thm : thm
    val fatou_lemma : thm
    val fatou_lemma' : thm
    val fcp_cross_UNIV : thm
    val fcp_cross_alt : thm
    val fcp_prod_alt : thm
    val fcp_sigma_alt : thm
    val filtration_from_measurable_functions : thm
    val general_BIGUNION_CROSS : thm
    val general_CROSS_BIGUNION : thm
    val general_CROSS_DIFF : thm
    val general_CROSS_DIFF' : thm
    val general_INTER_CROSS : thm
    val general_SUBSET_CROSS : thm
    val general_sigma_of_generator : thm
    val indicator_fn_general_cross : thm
    val integrable_cong_measure : thm
    val integrable_cong_measure' : thm
    val integral_cong_measure : thm
    val integral_cong_measure' : thm
    val integral_distr : thm
    val lborel_2d_prod_measure : thm
    val lebesgue_dominated_convergence : thm
    val lp_space_AE_normal : thm
    val lp_space_add : thm
    val lp_space_add_cmul : thm
    val lp_space_alt_finite : thm
    val lp_space_alt_finite' : thm
    val lp_space_alt_infinite : thm
    val lp_space_alt_seminorm : thm
    val lp_space_cmul : thm
    val lp_space_cong : thm
    val lp_space_cong_AE : thm
    val lp_space_sub : thm
    val martingale_alt : thm
    val martingale_alt_generator : thm
    val measure_space_prod_measure : thm
    val pair_operation_FCP_CONCAT : thm
    val pair_operation_pair : thm
    val pos_fn_integral_cong_measure : thm
    val pos_fn_integral_cong_measure' : thm
    val pos_fn_integral_distr : thm
    val prod_measure_space_alt : thm
    val prod_sets_alt : thm
    val prod_sigma_alt : thm
    val prod_sigma_of_generator : thm
    val seminorm_cmul : thm
    val seminorm_cong : thm
    val seminorm_cong_AE : thm
    val seminorm_eq_0 : thm
    val seminorm_infty : thm
    val seminorm_infty_AE_bound : thm
    val seminorm_infty_alt : thm
    val seminorm_normal : thm
    val seminorm_not_infty : thm
    val seminorm_one : thm
    val seminorm_pos : thm
    val seminorm_powr : thm
    val seminorm_two : thm
    val seminorm_zero : thm
    val sigma_algebra_general_sigma : thm
    val sigma_algebra_prod_sigma : thm
    val sigma_algebra_prod_sigma' : thm
    val sigma_finite_filtered_measure_space_alt : thm
    val sigma_finite_filtered_measure_space_alt_all : thm
    val sub_martingale_alt : thm
    val sub_martingale_alt_generator : thm
    val super_martingale_alt : thm
    val super_martingale_alt_generator : thm
    val uniqueness_of_prod_measure : thm
    val uniqueness_of_prod_measure' : thm
    val uniqueness_of_prod_measure_general : thm
    val uniqueness_of_prod_measure_general' : thm
  
  val martingale_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [fcp] Parent theory of "martingale"
   
   [lebesgue] Parent theory of "martingale"
   
   [fcp_cross_def]  Definition
      
      ⊢ ∀A B. fcp_cross A B = {FCP_CONCAT a b | a ∈ A ∧ b ∈ B}
   
   [fcp_prod_def]  Definition
      
      ⊢ ∀a b. fcp_prod a b = {fcp_cross s t | s ∈ a ∧ t ∈ b}
   
   [fcp_sigma_def]  Definition
      
      ⊢ ∀a b.
          fcp_sigma a b =
          sigma (fcp_cross (space a) (space b))
            (fcp_prod (subsets a) (subsets b))
   
   [filtered_measure_space_def]  Definition
      
      ⊢ ∀m a.
          filtered_measure_space m a ⇔
          measure_space m ∧ filtration (measurable_space m) a
   
   [filtration_def]  Definition
      
      ⊢ ∀A a.
          filtration A a ⇔
          (∀n. sub_sigma_algebra (a n) A) ∧
          ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
   
   [general_cross_def]  Definition
      
      ⊢ ∀cons A B. general_cross cons A B = {cons a b | a ∈ A ∧ b ∈ B}
   
   [general_prod_def]  Definition
      
      ⊢ ∀cons A B.
          general_prod cons A B = {general_cross cons a b | a ∈ A ∧ b ∈ B}
   
   [general_sigma_def]  Definition
      
      ⊢ ∀cons A B.
          general_sigma cons A B =
          sigma (general_cross cons (space A) (space B))
            (general_prod cons (subsets A) (subsets B))
   
   [infty_sigma_algebra_def]  Definition
      
      ⊢ ∀sp a.
          infty_sigma_algebra sp a =
          sigma sp (BIGUNION (IMAGE (λi. subsets (a i)) 𝕌(:num)))
   
   [lborel_2d_def]  Definition
      
      ⊢ sigma_finite_measure_space lborel_2d ∧
        m_space lborel_2d = 𝕌(:real) × 𝕌(:real) ∧
        measurable_sets lborel_2d =
        subsets ((𝕌(:real),subsets borel) × (𝕌(:real),subsets borel)) ∧
        (∀s t.
           s ∈ subsets borel ∧ t ∈ subsets borel ⇒
           measure lborel_2d (s × t) = lambda s * lambda t) ∧
        ∀s. s ∈ measurable_sets lborel_2d ⇒
            (∀x. (λy. 𝟙 s (x,y)) ∈ Borel_measurable borel) ∧
            (∀y. (λx. 𝟙 s (x,y)) ∈ Borel_measurable borel) ∧
            (λy. ∫⁺ lborel (λx. 𝟙 s (x,y))) ∈ Borel_measurable borel ∧
            (λx. ∫⁺ lborel (λy. 𝟙 s (x,y))) ∈ Borel_measurable borel ∧
            measure lborel_2d s = ∫⁺ lborel (λy. ∫⁺ lborel (λx. 𝟙 s (x,y))) ∧
            measure lborel_2d s = ∫⁺ lborel (λx. ∫⁺ lborel (λy. 𝟙 s (x,y)))
   
   [lp_space_def]  Definition
      
      ⊢ ∀p m.
          lp_space p m =
          {f |
           f ∈ Borel_measurable (measurable_space m) ∧
           if p = +∞ then
             ∃c. 0 < c ∧ c ≠ +∞ ∧
                 measure m {x | x ∈ m_space m ∧ c ≤ abs (f x)} = 0
           else ∫⁺ m (λx. abs (f x) powr p) ≠ +∞}
   
   [martingale_def]  Definition
      
      ⊢ ∀m a u.
          martingale m a u ⇔
          sigma_finite_filtered_measure_space m a ∧
          (∀n. integrable m (u n)) ∧
          ∀n s.
            s ∈ subsets (a n) ⇒
            ∫ m (λx. u (SUC n) x * 𝟙 s x) = ∫ m (λx. u n x * 𝟙 s x)
   
   [pair_operation_def]  Definition
      
      ⊢ ∀cons car cdr.
          pair_operation cons car cdr ⇔
          (∀a b. car (cons a b) = a ∧ cdr (cons a b) = b) ∧
          ∀a b c d. cons a b = cons c d ⇔ a = c ∧ b = d
   
   [prod_measure_def]  Definition
      
      ⊢ ∀m1 m2.
          prod_measure m1 m2 = (λs. ∫⁺ m2 (λy. ∫⁺ m1 (λx. 𝟙 s (x,y))))
   
   [prod_measure_space_def]  Definition
      
      ⊢ ∀m1 m2.
          m1 × m2 =
          (m_space m1 × m_space m2,
           subsets (measurable_space m1 × measurable_space m2),
           prod_measure m1 m2)
   
   [seminorm_def]  Definition
      
      ⊢ ∀p m f.
          seminorm p m f =
          if p = +∞ then
            inf
              {c |
               0 < c ∧ measure m {x | x ∈ m_space m ∧ c ≤ abs (f x)} = 0}
          else ∫⁺ m (λx. abs (f x) powr p) powr p⁻¹
   
   [sigma_finite_filtered_measure_space_def]  Definition
      
      ⊢ ∀m a.
          sigma_finite_filtered_measure_space m a ⇔
          filtered_measure_space m a ∧
          sigma_finite (m_space m,subsets (a 0),measure m)
   
   [sub_martingale_def]  Definition
      
      ⊢ ∀m a u.
          sub_martingale m a u ⇔
          sigma_finite_filtered_measure_space m a ∧
          (∀n. integrable m (u n)) ∧
          ∀n s.
            s ∈ subsets (a n) ⇒
            ∫ m (λx. u n x * 𝟙 s x) ≤ ∫ m (λx. u (SUC n) x * 𝟙 s x)
   
   [sub_sigma_algebra_def]  Definition
      
      ⊢ ∀a b.
          sub_sigma_algebra a b ⇔
          sigma_algebra a ∧ sigma_algebra b ∧ space a = space b ∧
          subsets a ⊆ subsets b
   
   [super_martingale_def]  Definition
      
      ⊢ ∀m a u.
          super_martingale m a u ⇔
          sigma_finite_filtered_measure_space m a ∧
          (∀n. integrable m (u n)) ∧
          ∀n s.
            s ∈ subsets (a n) ⇒
            ∫ m (λx. u (SUC n) x * 𝟙 s x) ≤ ∫ m (λx. u n x * 𝟙 s x)
   
   [CROSS_ALT]  Theorem
      
      ⊢ ∀A B. A × B = general_cross $, A B
   
   [Cauchy_Schwarz_inequality]  Theorem
      
      ⊢ ∀m u v.
          measure_space m ∧ u ∈ L2_space m ∧ v ∈ L2_space m ⇒
          integrable m (λx. u x * v x) ∧
          ∫ m (λx. abs (u x * v x)) ≤ seminorm 2 m u * seminorm 2 m v
   
   [Cauchy_Schwarz_inequality']  Theorem
      
      ⊢ ∀m u v.
          measure_space m ∧ u ∈ L2_space m ∧ v ∈ L2_space m ⇒
          ∫⁺ m (λx. abs (u x * v x)) ≤
          sqrt (∫⁺ m (λx. (u x)²) * ∫⁺ m (λx. (v x)²))
   
   [EXISTENCE_OF_PROD_MEASURE]  Theorem
      
      ⊢ ∀X Y A B u v m0.
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m0 (s × t) = u s * v t) ⇒
          (∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
               (∀x. x ∈ X ⇒ (λy. 𝟙 s (x,y)) ∈ Borel_measurable (Y,B)) ∧
               (∀y. y ∈ Y ⇒ (λx. 𝟙 s (x,y)) ∈ Borel_measurable (X,A)) ∧
               (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (x,y))) ∈ Borel_measurable (Y,B) ∧
               (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (x,y))) ∈ Borel_measurable (X,A)) ∧
          ∃m. sigma_finite_measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
              (∀s. s ∈ prod_sets A B ⇒ m s = m0 s) ∧
              ∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
                  m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (x,y))) ∧
                  m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (x,y)))
   
   [EXISTENCE_OF_PROD_MEASURE']  Theorem
      
      ⊢ ∀X Y A B u v m0.
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m0 (s × t) = u s * v t) ⇒
          (∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
               (∀x. x ∈ X ⇒ (λy. 𝟙 s (x,y)) ∈ Borel_measurable (Y,B)) ∧
               (∀y. y ∈ Y ⇒ (λx. 𝟙 s (x,y)) ∈ Borel_measurable (X,A)) ∧
               (λy. ∫ (X,A,u) (λx. 𝟙 s (x,y))) ∈ Borel_measurable (Y,B) ∧
               (λx. ∫ (Y,B,v) (λy. 𝟙 s (x,y))) ∈ Borel_measurable (X,A)) ∧
          ∃m. sigma_finite_measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
              (∀s. s ∈ prod_sets A B ⇒ m s = m0 s) ∧
              ∀s. s ∈ subsets ((X,A) × (Y,B)) ⇒
                  m s = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. 𝟙 s (x,y))) ∧
                  m s = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. 𝟙 s (x,y)))
   
   [FCP_BIGUNION_CROSS]  Theorem
      
      ⊢ ∀f s t.
          fcp_cross (BIGUNION (IMAGE f s)) t =
          BIGUNION (IMAGE (λn. fcp_cross (f n) t) s)
   
   [FCP_CROSS_BIGUNION]  Theorem
      
      ⊢ ∀f s t.
          fcp_cross t (BIGUNION (IMAGE f s)) =
          BIGUNION (IMAGE (λn. fcp_cross t (f n)) s)
   
   [FCP_CROSS_DIFF]  Theorem
      
      ⊢ ∀X s t.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
          fcp_cross (X DIFF s) t = fcp_cross X t DIFF fcp_cross s t
   
   [FCP_CROSS_DIFF']  Theorem
      
      ⊢ ∀s X t.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
          fcp_cross s (X DIFF t) = fcp_cross s X DIFF fcp_cross s t
   
   [FCP_INTER_CROSS]  Theorem
      
      ⊢ ∀a b c d.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
          fcp_cross a b ∩ fcp_cross c d = fcp_cross (a ∩ c) (b ∩ d)
   
   [FCP_SUBSET_CROSS]  Theorem
      
      ⊢ ∀a b c d. a ⊆ b ∧ c ⊆ d ⇒ fcp_cross a c ⊆ fcp_cross b d
   
   [FILTRATION]  Theorem
      
      ⊢ ∀A a.
          filtration A a ⇔
          (∀n. sub_sigma_algebra (a n) A) ∧
          (∀n. subsets (a n) ⊆ subsets A) ∧
          ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
   
   [FILTRATION_BOUNDED]  Theorem
      
      ⊢ ∀A a. filtration A a ⇒ ∀n. sub_sigma_algebra (a n) A
   
   [FILTRATION_MONO]  Theorem
      
      ⊢ ∀A a. filtration A a ⇒ ∀i j. i ≤ j ⇒ subsets (a i) ⊆ subsets (a j)
   
   [FILTRATION_SUBSETS]  Theorem
      
      ⊢ ∀A a. filtration A a ⇒ ∀n. subsets (a n) ⊆ subsets A
   
   [FUBINI]  Theorem
      
      ⊢ ∀X Y A B u v f.
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          f ∈ Borel_measurable ((X,A) × (Y,B)) ∧
          (∫⁺ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∨
           ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
           ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
          ∫⁺ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∧
          ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
          ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
          integrable ((X,A,u) × (Y,B,v)) f ∧
          (AE y::(Y,B,v). integrable (X,A,u) (λx. f (x,y))) ∧
          (AE x::(X,A,u). integrable (Y,B,v) (λy. f (x,y))) ∧
          integrable (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))) ∧
          integrable (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
          ∫ ((X,A,u) × (Y,B,v)) f = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
          ∫ ((X,A,u) × (Y,B,v)) f = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y)))
   
   [FUBINI']  Theorem
      
      ⊢ ∀X Y A B u v f.
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          f ∈ Borel_measurable ((X,A) × (Y,B)) ∧
          (∫ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∨
           ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
           ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
          ∫ ((X,A,u) × (Y,B,v)) (abs ∘ f) ≠ +∞ ∧
          ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
          ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
          integrable ((X,A,u) × (Y,B,v)) f ∧
          (AE y::(Y,B,v). integrable (X,A,u) (λx. f (x,y))) ∧
          (AE x::(X,A,u). integrable (Y,B,v) (λy. f (x,y))) ∧
          integrable (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y))) ∧
          integrable (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
          ∫ ((X,A,u) × (Y,B,v)) f = ∫ (Y,B,v) (λy. ∫ (X,A,u) (λx. f (x,y))) ∧
          ∫ ((X,A,u) × (Y,B,v)) f = ∫ (X,A,u) (λx. ∫ (Y,B,v) (λy. f (x,y)))
   
   [Fubini]  Theorem
      
      ⊢ ∀m1 m2 f.
          sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ∧
          f ∈ Borel_measurable (measurable_space m1 × measurable_space m2) ∧
          (∫⁺ (m1 × m2) (abs ∘ f) ≠ +∞ ∨
           ∫⁺ m2 (λy. ∫⁺ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
           ∫⁺ m1 (λx. ∫⁺ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
          ∫⁺ (m1 × m2) (abs ∘ f) ≠ +∞ ∧
          ∫⁺ m2 (λy. ∫⁺ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
          ∫⁺ m1 (λx. ∫⁺ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
          integrable (m1 × m2) f ∧
          (AE y::m2. integrable m1 (λx. f (x,y))) ∧
          (AE x::m1. integrable m2 (λy. f (x,y))) ∧
          integrable m1 (λx. ∫ m2 (λy. f (x,y))) ∧
          integrable m2 (λy. ∫ m1 (λx. f (x,y))) ∧
          ∫ (m1 × m2) f = ∫ m2 (λy. ∫ m1 (λx. f (x,y))) ∧
          ∫ (m1 × m2) f = ∫ m1 (λx. ∫ m2 (λy. f (x,y)))
   
   [Fubini']  Theorem
      
      ⊢ ∀m1 m2 f.
          sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ∧
          f ∈ Borel_measurable (measurable_space m1 × measurable_space m2) ∧
          (∫ (m1 × m2) (abs ∘ f) ≠ +∞ ∨
           ∫ m2 (λy. ∫ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∨
           ∫ m1 (λx. ∫ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞) ⇒
          ∫ (m1 × m2) (abs ∘ f) ≠ +∞ ∧
          ∫ m2 (λy. ∫ m1 (λx. (abs ∘ f) (x,y))) ≠ +∞ ∧
          ∫ m1 (λx. ∫ m2 (λy. (abs ∘ f) (x,y))) ≠ +∞ ∧
          integrable (m1 × m2) f ∧
          (AE y::m2. integrable m1 (λx. f (x,y))) ∧
          (AE x::m1. integrable m2 (λy. f (x,y))) ∧
          integrable m1 (λx. ∫ m2 (λy. f (x,y))) ∧
          integrable m2 (λy. ∫ m1 (λx. f (x,y))) ∧
          ∫ (m1 × m2) f = ∫ m2 (λy. ∫ m1 (λx. f (x,y))) ∧
          ∫ (m1 × m2) f = ∫ m1 (λx. ∫ m2 (λy. f (x,y)))
   
   [Hoelder_inequality]  Theorem
      
      ⊢ ∀m u v p q.
          measure_space m ∧ 0 < p ∧ 0 < q ∧ p⁻¹ + q⁻¹ = 1 ∧
          u ∈ lp_space p m ∧ v ∈ lp_space q m ⇒
          integrable m (λx. u x * v x) ∧
          ∫ m (λx. abs (u x * v x)) ≤ seminorm p m u * seminorm q m v
   
   [Hoelder_inequality']  Theorem
      
      ⊢ ∀m u v p q.
          measure_space m ∧ 0 < p ∧ 0 < q ∧ p⁻¹ + q⁻¹ = 1 ∧
          u ∈ lp_space p m ∧ v ∈ lp_space q m ⇒
          ∫⁺ m (λx. abs (u x * v x)) ≤ seminorm p m u * seminorm q m v
   
   [INDICATOR_FN_FCP_CROSS]  Theorem
      
      ⊢ ∀s t x y.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
          𝟙 (fcp_cross s t) (FCP_CONCAT x y) = 𝟙 s x * 𝟙 t y
   
   [INFTY_SIGMA_ALGEBRA_BOUNDED]  Theorem
      
      ⊢ ∀A a.
          filtration A a ⇒
          sub_sigma_algebra (infty_sigma_algebra (space A) a) A
   
   [INFTY_SIGMA_ALGEBRA_MAXIMAL]  Theorem
      
      ⊢ ∀A a.
          filtration A a ⇒
          ∀n. sub_sigma_algebra (a n) (infty_sigma_algebra (space A) a)
   
   [IN_FCP_CROSS]  Theorem
      
      ⊢ ∀s a b.
          s ∈ fcp_cross a b ⇔ ∃t u. s = FCP_CONCAT t u ∧ t ∈ a ∧ u ∈ b
   
   [IN_FCP_PROD]  Theorem
      
      ⊢ ∀s A B. s ∈ fcp_prod A B ⇔ ∃a b. s = fcp_cross a b ∧ a ∈ A ∧ b ∈ B
   
   [IN_MEASURABLE_BOREL_FROM_PROD_SIGMA]  Theorem
      
      ⊢ ∀X Y A B f.
          sigma_algebra (X,A) ∧ sigma_algebra (Y,B) ∧
          f ∈ Borel_measurable ((X,A) × (Y,B)) ⇒
          (∀y. y ∈ Y ⇒ (λx. f (x,y)) ∈ Borel_measurable (X,A)) ∧
          ∀x. x ∈ X ⇒ (λy. f (x,y)) ∈ Borel_measurable (Y,B)
   
   [IN_general_cross]  Theorem
      
      ⊢ ∀cons s A B.
          s ∈ general_cross cons A B ⇔ ∃a b. s = cons a b ∧ a ∈ A ∧ b ∈ B
   
   [IN_general_prod]  Theorem
      
      ⊢ ∀cons s A B.
          s ∈ general_prod cons A B ⇔
          ∃a b. s = general_cross cons a b ∧ a ∈ A ∧ b ∈ B
   
   [L1_space_alt_integrable]  Theorem
      
      ⊢ ∀m f. measure_space m ⇒ (f ∈ L1_space m ⇔ integrable m f)
   
   [L2_space_alt_integrable_square]  Theorem
      
      ⊢ ∀m f.
          measure_space m ⇒
          (f ∈ L2_space m ⇔
           f ∈ Borel_measurable (measurable_space m) ∧
           integrable m (λx. (f x)²))
   
   [LIM_SEQUENTIALLY_CESARO]  Theorem
      
      ⊢ ∀f l.
          ((λn. f n) --> l) sequentially ⇒
          ((λn. ∑ f (count1 n) / &SUC n) --> l) sequentially
   
   [LIM_SEQUENTIALLY_real_normal]  Theorem
      
      ⊢ ∀a l.
          (∀n. a n ≠ +∞ ∧ a n ≠ −∞) ⇒
          ((real ∘ a --> l) sequentially ⇔
           ∀e. 0 < e ⇒ ∃N. ∀n. N ≤ n ⇒ abs (a n − Normal l) < Normal e)
   
   [MARTINGALE_EQ_SUB_SUPER]  Theorem
      
      ⊢ ∀m a u.
          martingale m a u ⇔ sub_martingale m a u ∧ super_martingale m a u
   
   [Minkowski_inequality]  Theorem
      
      ⊢ ∀p m u v.
          measure_space m ∧ 1 ≤ p ∧ u ∈ lp_space p m ∧ v ∈ lp_space p m ⇒
          (λx. u x + v x) ∈ lp_space p m ∧
          seminorm p m (λx. u x + v x) ≤ seminorm p m u + seminorm p m v
   
   [Minkowski_inequality']  Theorem
      
      ⊢ ∀p m u v.
          measure_space m ∧ 1 ≤ p ∧ u ∈ lp_space p m ∧ v ∈ lp_space p m ⇒
          seminorm p m (λx. u x + v x) ≤ seminorm p m u + seminorm p m v
   
   [PROD_SIGMA_OF_GENERATOR]  Theorem
      
      ⊢ ∀X Y E G.
          subset_class X E ∧ subset_class Y G ∧
          has_exhausting_sequence (X,E) ∧ has_exhausting_sequence (Y,G) ⇒
          (X,E) × (Y,G) = sigma X E × sigma Y G
   
   [SIGMA_FINITE_FILTERED_MEASURE_SPACE]  Theorem
      
      ⊢ ∀m a.
          sigma_finite_filtered_measure_space m a ⇒
          ∀n. sigma_finite (m_space m,subsets (a n),measure m)
   
   [SUB_SIGMA_ALGEBRA_ANTISYM]  Theorem
      
      ⊢ ∀a b. sub_sigma_algebra a b ∧ sub_sigma_algebra b a ⇒ a = b
   
   [SUB_SIGMA_ALGEBRA_MEASURE_SPACE]  Theorem
      
      ⊢ ∀m a.
          measure_space m ∧ sub_sigma_algebra a (measurable_space m) ⇒
          measure_space (m_space m,subsets a,measure m)
   
   [SUB_SIGMA_ALGEBRA_ORDER]  Theorem
      
      ⊢ Order sub_sigma_algebra
   
   [SUB_SIGMA_ALGEBRA_REFL]  Theorem
      
      ⊢ ∀a. sigma_algebra a ⇒ sub_sigma_algebra a a
   
   [SUB_SIGMA_ALGEBRA_TRANS]  Theorem
      
      ⊢ ∀a b c.
          sub_sigma_algebra a b ∧ sub_sigma_algebra b c ⇒
          sub_sigma_algebra a c
   
   [TONELLI]  Theorem
      
      ⊢ ∀X Y A B u v f.
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          f ∈ Borel_measurable ((X,A) × (Y,B)) ∧ (∀s. s ∈ X × Y ⇒ 0 ≤ f s) ⇒
          (∀y. y ∈ Y ⇒ (λx. f (x,y)) ∈ Borel_measurable (X,A)) ∧
          (∀x. x ∈ X ⇒ (λy. f (x,y)) ∈ Borel_measurable (Y,B)) ∧
          (λx. ∫⁺ (Y,B,v) (λy. f (x,y))) ∈ Borel_measurable (X,A) ∧
          (λy. ∫⁺ (X,A,u) (λx. f (x,y))) ∈ Borel_measurable (Y,B) ∧
          ∫⁺ ((X,A,u) × (Y,B,v)) f =
          ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. f (x,y))) ∧
          ∫⁺ ((X,A,u) × (Y,B,v)) f =
          ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. f (x,y)))
   
   [UNIQUENESS_OF_PROD_MEASURE]  Theorem
      
      ⊢ ∀X Y E G A B u v m m'.
          subset_class X E ∧ subset_class Y G ∧ sigma_finite (X,E,u) ∧
          sigma_finite (Y,G,v) ∧ (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧
          (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧ A = sigma X E ∧
          B = sigma Y G ∧ measure_space (X,subsets A,u) ∧
          measure_space (Y,subsets B,v) ∧
          measure_space (X × Y,subsets (A × B),m) ∧
          measure_space (X × Y,subsets (A × B),m') ∧
          (∀s t. s ∈ E ∧ t ∈ G ⇒ m (s × t) = u s * v t) ∧
          (∀s t. s ∈ E ∧ t ∈ G ⇒ m' (s × t) = u s * v t) ⇒
          ∀x. x ∈ subsets (A × B) ⇒ m x = m' x
   
   [UNIQUENESS_OF_PROD_MEASURE']  Theorem
      
      ⊢ ∀X Y A B u v m m'.
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          measure_space (X × Y,subsets ((X,A) × (Y,B)),m) ∧
          measure_space (X × Y,subsets ((X,A) × (Y,B)),m') ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m (s × t) = u s * v t) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m' (s × t) = u s * v t) ⇒
          ∀x. x ∈ subsets ((X,A) × (Y,B)) ⇒ m x = m' x
   
   [exhausting_sequence_CROSS]  Theorem
      
      ⊢ ∀X Y A B f g.
          exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
          exhausting_sequence (X × Y,prod_sets A B) (λn. f n × g n)
   
   [exhausting_sequence_cross]  Theorem
      
      ⊢ ∀X Y A B f g.
          exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
          exhausting_sequence (fcp_cross X Y,fcp_prod A B)
            (λn. fcp_cross (f n) (g n))
   
   [exhausting_sequence_general_cross]  Theorem
      
      ⊢ ∀cons X Y A B f g.
          exhausting_sequence (X,A) f ∧ exhausting_sequence (Y,B) g ⇒
          exhausting_sequence
            (general_cross cons X Y,general_prod cons A B)
            (λn. general_cross cons (f n) (g n))
   
   [existence_of_prod_measure]  Theorem
      
      ⊢ ∀X Y A B u v m0.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m0 (fcp_cross s t) = u s * v t) ⇒
          (∀s. s ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒
               (∀x. x ∈ X ⇒
                    (λy. 𝟙 s (FCP_CONCAT x y)) ∈ Borel_measurable (Y,B)) ∧
               (∀y. y ∈ Y ⇒
                    (λx. 𝟙 s (FCP_CONCAT x y)) ∈ Borel_measurable (X,A)) ∧
               (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (FCP_CONCAT x y))) ∈
               Borel_measurable (Y,B) ∧
               (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (FCP_CONCAT x y))) ∈
               Borel_measurable (X,A)) ∧
          ∃m. sigma_finite_measure_space
                (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) ∧
              (∀s. s ∈ fcp_prod A B ⇒ m s = m0 s) ∧
              ∀s. s ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒
                  m s =
                  ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (FCP_CONCAT x y))) ∧
                  m s =
                  ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (FCP_CONCAT x y)))
   
   [existence_of_prod_measure_general]  Theorem
      
      ⊢ ∀cons car cdr X Y A B u v m0.
          pair_operation cons car cdr ∧
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m0 (general_cross cons s t) = u s * v t) ⇒
          (∀s. s ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒
               (∀x. x ∈ X ⇒ (λy. 𝟙 s (cons x y)) ∈ Borel_measurable (Y,B)) ∧
               (∀y. y ∈ Y ⇒ (λx. 𝟙 s (cons x y)) ∈ Borel_measurable (X,A)) ∧
               (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (cons x y))) ∈
               Borel_measurable (Y,B) ∧
               (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (cons x y))) ∈
               Borel_measurable (X,A)) ∧
          ∃m. sigma_finite_measure_space
                (general_cross cons X Y,
                 subsets (general_sigma cons (X,A) (Y,B)),m) ∧
              (∀s. s ∈ general_prod cons A B ⇒ m s = m0 s) ∧
              ∀s. s ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒
                  m s = ∫⁺ (Y,B,v) (λy. ∫⁺ (X,A,u) (λx. 𝟙 s (cons x y))) ∧
                  m s = ∫⁺ (X,A,u) (λx. ∫⁺ (Y,B,v) (λy. 𝟙 s (cons x y)))
   
   [ext_liminf_imp_subseq]  Theorem
      
      ⊢ ∀a. (∀n. a n ≠ +∞ ∧ a n ≠ −∞) ∧ liminf a ≠ +∞ ∧ liminf a ≠ −∞ ⇒
            ∃f. (∀m n. m < n ⇒ f m < f n) ∧
                (real ∘ a ∘ f --> real (liminf a)) sequentially
   
   [ext_liminf_le_subseq]  Theorem
      
      ⊢ ∀a f l.
          (∀n. a n ≠ +∞ ∧ a n ≠ −∞) ∧ (∀m n. m < n ⇒ f m < f n) ∧
          (real ∘ a ∘ f --> l) sequentially ⇒
          liminf a ≤ Normal l
   
   [ext_limsup_imp_subseq]  Theorem
      
      ⊢ ∀a. (∀n. a n ≠ +∞ ∧ a n ≠ −∞) ∧ limsup a ≠ +∞ ∧ limsup a ≠ −∞ ⇒
            ∃f. (∀m n. m < n ⇒ f m < f n) ∧
                (real ∘ a ∘ f --> real (limsup a)) sequentially
   
   [ext_limsup_le_subseq]  Theorem
      
      ⊢ ∀a f l.
          (∀n. a n ≠ +∞ ∧ a n ≠ −∞) ∧ (∀m n. m < n ⇒ f m < f n) ∧
          (real ∘ a ∘ f --> l) sequentially ⇒
          Normal l ≤ limsup a
   
   [ext_limsup_thm]  Theorem
      
      ⊢ ∀a l.
          (∀n. a n ≠ +∞ ∧ a n ≠ −∞) ⇒
          ((real ∘ a --> l) sequentially ⇔
           limsup a = Normal l ∧ liminf a = Normal l)
   
   [fatou_lemma]  Theorem
      
      ⊢ ∀m f.
          measure_space m ∧ (∀x n. x ∈ m_space m ⇒ 0 ≤ f n x) ∧
          (∀n. f n ∈ Borel_measurable (measurable_space m)) ⇒
          ∫⁺ m (λx. liminf (λn. f n x)) ≤ liminf (λn. ∫⁺ m (f n))
   
   [fatou_lemma']  Theorem
      
      ⊢ ∀m f w.
          measure_space m ∧ ∫⁺ m w < +∞ ∧
          (∀x n. x ∈ m_space m ⇒ 0 ≤ f n x ∧ f n x ≤ w x ∧ w x < +∞) ∧
          (∀n. f n ∈ Borel_measurable (measurable_space m)) ⇒
          limsup (λn. ∫⁺ m (f n)) ≤ ∫⁺ m (λx. limsup (λn. f n x))
   
   [fcp_cross_UNIV]  Theorem
      
      ⊢ FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
        fcp_cross 𝕌(:α[β]) 𝕌(:α[γ]) = 𝕌(:α[β + γ])
   
   [fcp_cross_alt]  Theorem
      
      ⊢ ∀A B. fcp_cross A B = general_cross FCP_CONCAT A B
   
   [fcp_prod_alt]  Theorem
      
      ⊢ ∀A B. fcp_prod A B = general_prod FCP_CONCAT A B
   
   [fcp_sigma_alt]  Theorem
      
      ⊢ ∀A B. fcp_sigma A B = general_sigma FCP_CONCAT A B
   
   [filtration_from_measurable_functions]  Theorem
      
      ⊢ ∀m X A.
          measure_space m ∧
          (∀n. X n ∈ Borel_measurable (measurable_space m)) ∧
          (∀n. A n = sigma (m_space m) (λn. Borel) X (count1 n)) ⇒
          filtration (measurable_space m) A
   
   [general_BIGUNION_CROSS]  Theorem
      
      ⊢ ∀cons f s t.
          general_cross cons (BIGUNION (IMAGE f s)) t =
          BIGUNION (IMAGE (λn. general_cross cons (f n) t) s)
   
   [general_CROSS_BIGUNION]  Theorem
      
      ⊢ ∀cons f s t.
          general_cross cons t (BIGUNION (IMAGE f s)) =
          BIGUNION (IMAGE (λn. general_cross cons t (f n)) s)
   
   [general_CROSS_DIFF]  Theorem
      
      ⊢ ∀cons car cdr X s t.
          pair_operation cons car cdr ⇒
          general_cross cons (X DIFF s) t =
          general_cross cons X t DIFF general_cross cons s t
   
   [general_CROSS_DIFF']  Theorem
      
      ⊢ ∀cons car cdr s X t.
          pair_operation cons car cdr ⇒
          general_cross cons s (X DIFF t) =
          general_cross cons s X DIFF general_cross cons s t
   
   [general_INTER_CROSS]  Theorem
      
      ⊢ ∀cons car cdr a b c d.
          pair_operation cons car cdr ⇒
          general_cross cons a b ∩ general_cross cons c d =
          general_cross cons (a ∩ c) (b ∩ d)
   
   [general_SUBSET_CROSS]  Theorem
      
      ⊢ ∀cons a b c d.
          a ⊆ b ∧ c ⊆ d ⇒ general_cross cons a c ⊆ general_cross cons b d
   
   [general_sigma_of_generator]  Theorem
      
      ⊢ ∀cons car cdr X Y E G.
          pair_operation cons car cdr ∧ subset_class X E ∧
          subset_class Y G ∧ has_exhausting_sequence (X,E) ∧
          has_exhausting_sequence (Y,G) ⇒
          general_sigma cons (X,E) (Y,G) =
          general_sigma cons (sigma X E) (sigma Y G)
   
   [indicator_fn_general_cross]  Theorem
      
      ⊢ ∀cons car cdr s t x y.
          pair_operation cons car cdr ⇒
          𝟙 (general_cross cons s t) (cons x y) = 𝟙 s x * 𝟙 t y
   
   [integrable_cong_measure]  Theorem
      
      ⊢ ∀sp sts u v f.
          measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
          (∀s. s ∈ sts ⇒ u s = v s) ⇒
          (integrable (sp,sts,u) f ⇔ integrable (sp,sts,v) f)
   
   [integrable_cong_measure']  Theorem
      
      ⊢ ∀m1 m2 f.
          measure_space m1 ∧ measure_space m2 ∧ measure_space_eq m1 m2 ⇒
          (integrable m1 f ⇔ integrable m2 f)
   
   [integral_cong_measure]  Theorem
      
      ⊢ ∀sp sts u v f.
          measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
          (∀s. s ∈ sts ⇒ u s = v s) ⇒
          ∫ (sp,sts,u) f = ∫ (sp,sts,v) f
   
   [integral_cong_measure']  Theorem
      
      ⊢ ∀m1 m2 f.
          measure_space m1 ∧ measure_space m2 ∧ measure_space_eq m1 m2 ⇒
          ∫ m1 f = ∫ m2 f
   
   [integral_distr]  Theorem
      
      ⊢ ∀M B f u.
          measure_space M ∧ sigma_algebra B ∧
          f ∈ measurable (measurable_space M) B ∧ u ∈ Borel_measurable B ⇒
          ∫ (space B,subsets B,distr M f) u = ∫ M (u ∘ f) ∧
          (integrable (space B,subsets B,distr M f) u ⇔
           integrable M (u ∘ f))
   
   [lborel_2d_prod_measure]  Theorem
      
      ⊢ ∀s. s ∈ measurable_sets lborel_2d ⇒
            measure lborel_2d s = measure (lborel × lborel) s
   
   [lebesgue_dominated_convergence]  Theorem
      
      ⊢ ∀m f fi.
          measure_space m ∧ (∀i. integrable m (fi i)) ∧ integrable m f ∧
          (∀i x. x ∈ m_space m ⇒ fi i x ≠ +∞ ∧ fi i x ≠ −∞) ∧
          (∀x. x ∈ m_space m ⇒ f x ≠ +∞ ∧ f x ≠ −∞) ∧
          (∀x. x ∈ m_space m ⇒
               ((λi. real (fi i x)) --> real (f x)) sequentially) ∧
          (∃w. integrable m w ∧ (∀x. x ∈ m_space m ⇒ 0 ≤ w x ∧ w x ≠ +∞) ∧
               ∀i x. x ∈ m_space m ⇒ abs (fi i x) ≤ w x) ⇒
          ((λi. real (∫ m (fi i))) --> real (∫ m f)) sequentially
   
   [lp_space_AE_normal]  Theorem
      
      ⊢ ∀p m f.
          measure_space m ∧ 0 < p ∧ f ∈ lp_space p m ⇒
          AE x::m. f x ≠ +∞ ∧ f x ≠ −∞
   
   [lp_space_add]  Theorem
      
      ⊢ ∀p m u v.
          measure_space m ∧ 0 < p ∧ u ∈ lp_space p m ∧ v ∈ lp_space p m ⇒
          (λx. u x + v x) ∈ lp_space p m
   
   [lp_space_add_cmul]  Theorem
      
      ⊢ ∀p m u v a b.
          measure_space m ∧ 0 < p ∧ u ∈ lp_space p m ∧ v ∈ lp_space p m ⇒
          (λx. Normal a * u x + Normal b * v x) ∈ lp_space p m
   
   [lp_space_alt_finite]  Theorem
      
      ⊢ ∀p m f.
          0 < p ∧ p ≠ +∞ ⇒
          (f ∈ lp_space p m ⇔
           f ∈ Borel_measurable (measurable_space m) ∧
           ∫⁺ m (λx. abs (f x) powr p) ≠ +∞)
   
   [lp_space_alt_finite']  Theorem
      
      ⊢ ∀p m f.
          measure_space m ∧ 0 < p ∧ p ≠ +∞ ⇒
          (f ∈ lp_space p m ⇔
           f ∈ Borel_measurable (measurable_space m) ∧
           ∫ m (λx. abs (f x) powr p) ≠ +∞)
   
   [lp_space_alt_infinite]  Theorem
      
      ⊢ ∀m f.
          measure_space m ⇒
          (f ∈ L_PosInf m ⇔
           f ∈ Borel_measurable (measurable_space m) ∧
           ∃c. 0 < c ∧ c ≠ +∞ ∧ AE x::m. abs (f x) < c)
   
   [lp_space_alt_seminorm]  Theorem
      
      ⊢ ∀p m f.
          measure_space m ∧ 0 < p ⇒
          (f ∈ lp_space p m ⇔
           f ∈ Borel_measurable (measurable_space m) ∧ seminorm p m f < +∞)
   
   [lp_space_cmul]  Theorem
      
      ⊢ ∀p m u r.
          measure_space m ∧ 0 < p ∧ u ∈ lp_space p m ⇒
          (λx. Normal r * u x) ∈ lp_space p m
   
   [lp_space_cong]  Theorem
      
      ⊢ ∀p m u v.
          measure_space m ∧ 0 < p ∧ (∀x. x ∈ m_space m ⇒ u x = v x) ⇒
          (u ∈ lp_space p m ⇔ v ∈ lp_space p m)
   
   [lp_space_cong_AE]  Theorem
      
      ⊢ ∀p m u v.
          measure_space m ∧ 0 < p ∧
          u ∈ Borel_measurable (measurable_space m) ∧
          v ∈ Borel_measurable (measurable_space m) ∧ (AE x::m. u x = v x) ⇒
          (u ∈ lp_space p m ⇔ v ∈ lp_space p m)
   
   [lp_space_sub]  Theorem
      
      ⊢ ∀p m u v.
          measure_space m ∧ 0 < p ∧ u ∈ lp_space p m ∧ v ∈ lp_space p m ⇒
          (λx. u x − v x) ∈ lp_space p m
   
   [martingale_alt]  Theorem
      
      ⊢ ∀m a u.
          martingale m a u ⇔
          sigma_finite_filtered_measure_space m a ∧
          (∀n. integrable m (u n)) ∧
          ∀i j s.
            i ≤ j ∧ s ∈ subsets (a i) ⇒
            ∫ m (λx. u i x * 𝟙 s x) = ∫ m (λx. u j x * 𝟙 s x)
   
   [martingale_alt_generator]  Theorem
      
      ⊢ ∀m a u g.
          (∀n. a n = sigma (m_space m) (g n)) ∧
          (∀n. has_exhausting_sequence (m_space m,g n)) ∧
          (∀n s. s ∈ g n ⇒ measure m s < +∞) ∧
          (∀n s t. s ∈ g n ∧ t ∈ g n ⇒ s ∩ t ∈ g n) ⇒
          (martingale m a u ⇔
           filtered_measure_space m a ∧ (∀n. integrable m (u n)) ∧
           ∀i j s.
             i ≤ j ∧ s ∈ g i ⇒
             ∫ m (λx. u i x * 𝟙 s x) = ∫ m (λx. u j x * 𝟙 s x))
   
   [measure_space_prod_measure]  Theorem
      
      ⊢ ∀m1 m2.
          sigma_finite_measure_space m1 ∧ sigma_finite_measure_space m2 ⇒
          measure_space (m1 × m2)
   
   [pair_operation_FCP_CONCAT]  Theorem
      
      ⊢ FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
        pair_operation FCP_CONCAT FCP_FST FCP_SND
   
   [pair_operation_pair]  Theorem
      
      ⊢ pair_operation $, FST SND
   
   [pos_fn_integral_cong_measure]  Theorem
      
      ⊢ ∀sp sts u v f.
          measure_space (sp,sts,u) ∧ measure_space (sp,sts,v) ∧
          (∀s. s ∈ sts ⇒ u s = v s) ∧ (∀x. x ∈ sp ⇒ 0 ≤ f x) ⇒
          ∫⁺ (sp,sts,u) f = ∫⁺ (sp,sts,v) f
   
   [pos_fn_integral_cong_measure']  Theorem
      
      ⊢ ∀m1 m2 f.
          measure_space m1 ∧ measure_space m2 ∧ measure_space_eq m1 m2 ∧
          (∀x. x ∈ m_space m1 ⇒ 0 ≤ f x) ⇒
          ∫⁺ m1 f = ∫⁺ m2 f
   
   [pos_fn_integral_distr]  Theorem
      
      ⊢ ∀M B f u.
          measure_space M ∧ sigma_algebra B ∧
          f ∈ measurable (measurable_space M) B ∧ u ∈ Borel_measurable B ∧
          (∀x. x ∈ space B ⇒ 0 ≤ u x) ⇒
          ∫⁺ (space B,subsets B,distr M f) u = ∫⁺ M (u ∘ f)
   
   [prod_measure_space_alt]  Theorem
      
      ⊢ ∀m1 m2.
          m1 × m2 =
          (m_space m1 × m_space m2,
           subsets (measurable_space m1 × measurable_space m2),
           (λs. ∫⁺ m2 (λy. ∫⁺ m1 (λx. 𝟙 s (x,y)))))
   
   [prod_sets_alt]  Theorem
      
      ⊢ ∀A B. prod_sets A B = general_prod $, A B
   
   [prod_sigma_alt]  Theorem
      
      ⊢ ∀A B. A × B = general_sigma $, A B
   
   [prod_sigma_of_generator]  Theorem
      
      ⊢ ∀X Y E G.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ subset_class X E ∧
          subset_class Y G ∧ has_exhausting_sequence (X,E) ∧
          has_exhausting_sequence (Y,G) ⇒
          fcp_sigma (X,E) (Y,G) = fcp_sigma (sigma X E) (sigma Y G)
   
   [seminorm_cmul]  Theorem
      
      ⊢ ∀p m u r.
          measure_space m ∧ 0 < p ∧
          u ∈ Borel_measurable (measurable_space m) ⇒
          seminorm p m (λx. Normal r * u x) =
          Normal (abs r) * seminorm p m u
   
   [seminorm_cong]  Theorem
      
      ⊢ ∀m u v p.
          measure_space m ∧ 0 < p ∧
          (u ∈ Borel_measurable (measurable_space m) ∨
           v ∈ Borel_measurable (measurable_space m)) ∧
          (∀x. x ∈ m_space m ⇒ u x = v x) ⇒
          seminorm p m u = seminorm p m v
   
   [seminorm_cong_AE]  Theorem
      
      ⊢ ∀m u v p.
          measure_space m ∧ 0 < p ∧
          u ∈ Borel_measurable (measurable_space m) ∧
          v ∈ Borel_measurable (measurable_space m) ∧ (AE x::m. u x = v x) ⇒
          seminorm p m u = seminorm p m v
   
   [seminorm_eq_0]  Theorem
      
      ⊢ ∀p m f.
          measure_space m ∧ 0 < p ∧
          f ∈ Borel_measurable (measurable_space m) ⇒
          (seminorm p m f = 0 ⇔ AE x::m. f x = 0)
   
   [seminorm_infty]  Theorem
      
      ⊢ ∀m f.
          seminorm +∞ m f =
          inf
            {c | 0 < c ∧ measure m {x | x ∈ m_space m ∧ c ≤ abs (f x)} = 0}
   
   [seminorm_infty_AE_bound]  Theorem
      
      ⊢ ∀m f.
          measure_space m ∧ f ∈ Borel_measurable (measurable_space m) ⇒
          AE x::m. abs (f x) ≤ seminorm +∞ m f
   
   [seminorm_infty_alt]  Theorem
      
      ⊢ ∀m f.
          measure_space m ∧ f ∈ Borel_measurable (measurable_space m) ⇒
          seminorm +∞ m f = inf {c | 0 < c ∧ AE x::m. abs (f x) < c}
   
   [seminorm_normal]  Theorem
      
      ⊢ ∀p m f.
          0 < p ∧ p ≠ +∞ ⇒
          seminorm p m f = ∫⁺ m (λx. abs (f x) powr p) powr p⁻¹
   
   [seminorm_not_infty]  Theorem
      
      ⊢ ∀p m f.
          measure_space m ∧ 0 < p ∧ f ∈ lp_space p m ⇒
          seminorm p m f ≠ +∞ ∧ seminorm p m f ≠ −∞
   
   [seminorm_one]  Theorem
      
      ⊢ ∀m f. measure_space m ⇒ seminorm 1 m f = ∫⁺ m (abs ∘ f)
   
   [seminorm_pos]  Theorem
      
      ⊢ ∀p m f. 0 < p ⇒ 0 ≤ seminorm p m f
   
   [seminorm_powr]  Theorem
      
      ⊢ ∀p m f.
          measure_space m ∧ 0 < p ∧ p ≠ +∞ ⇒
          seminorm p m f powr p = ∫⁺ m (λx. abs (f x) powr p)
   
   [seminorm_two]  Theorem
      
      ⊢ ∀m f. measure_space m ⇒ seminorm 2 m f = sqrt (∫⁺ m (λx. (f x)²))
   
   [seminorm_zero]  Theorem
      
      ⊢ ∀p m. measure_space m ∧ 0 < p ⇒ seminorm p m (λx. 0) = 0
   
   [sigma_algebra_general_sigma]  Theorem
      
      ⊢ ∀cons A B.
          subset_class (space A) (subsets A) ∧
          subset_class (space B) (subsets B) ⇒
          sigma_algebra (general_sigma cons A B)
   
   [sigma_algebra_prod_sigma]  Theorem
      
      ⊢ ∀a b.
          subset_class (space a) (subsets a) ∧
          subset_class (space b) (subsets b) ⇒
          sigma_algebra (fcp_sigma a b)
   
   [sigma_algebra_prod_sigma']  Theorem
      
      ⊢ ∀X Y A B.
          subset_class X A ∧ subset_class Y B ⇒
          sigma_algebra (fcp_sigma (X,A) (Y,B))
   
   [sigma_finite_filtered_measure_space_alt]  Theorem
      
      ⊢ ∀m a.
          sigma_finite_filtered_measure_space m a ⇔
          (measure_space m ∧ filtration (measurable_space m) a) ∧
          sigma_finite (m_space m,subsets (a 0),measure m)
   
   [sigma_finite_filtered_measure_space_alt_all]  Theorem
      
      ⊢ ∀m a.
          sigma_finite_filtered_measure_space m a ⇔
          measure_space m ∧ filtration (measurable_space m) a ∧
          ∀n. sigma_finite (m_space m,subsets (a n),measure m)
   
   [sub_martingale_alt]  Theorem
      
      ⊢ ∀m a u.
          sub_martingale m a u ⇔
          sigma_finite_filtered_measure_space m a ∧
          (∀n. integrable m (u n)) ∧
          ∀i j s.
            i ≤ j ∧ s ∈ subsets (a i) ⇒
            ∫ m (λx. u i x * 𝟙 s x) ≤ ∫ m (λx. u j x * 𝟙 s x)
   
   [sub_martingale_alt_generator]  Theorem
      
      ⊢ ∀m a u g.
          (∀n. a n = sigma (m_space m) (g n)) ∧
          (∀n. has_exhausting_sequence (m_space m,g n)) ∧
          (∀n s. s ∈ g n ⇒ measure m s < +∞) ∧
          (∀n. semiring (m_space m,g n)) ⇒
          (sub_martingale m a u ⇔
           filtered_measure_space m a ∧ (∀n. integrable m (u n)) ∧
           ∀i j s.
             i ≤ j ∧ s ∈ g i ⇒
             ∫ m (λx. u i x * 𝟙 s x) ≤ ∫ m (λx. u j x * 𝟙 s x))
   
   [super_martingale_alt]  Theorem
      
      ⊢ ∀m a u.
          super_martingale m a u ⇔
          sigma_finite_filtered_measure_space m a ∧
          (∀n. integrable m (u n)) ∧
          ∀i j s.
            i ≤ j ∧ s ∈ subsets (a i) ⇒
            ∫ m (λx. u j x * 𝟙 s x) ≤ ∫ m (λx. u i x * 𝟙 s x)
   
   [super_martingale_alt_generator]  Theorem
      
      ⊢ ∀m a u g.
          (∀n. a n = sigma (m_space m) (g n)) ∧
          (∀n. has_exhausting_sequence (m_space m,g n)) ∧
          (∀n s. s ∈ g n ⇒ measure m s < +∞) ∧
          (∀n. semiring (m_space m,g n)) ⇒
          (super_martingale m a u ⇔
           filtered_measure_space m a ∧ (∀n. integrable m (u n)) ∧
           ∀i j s.
             i ≤ j ∧ s ∈ g i ⇒
             ∫ m (λx. u j x * 𝟙 s x) ≤ ∫ m (λx. u i x * 𝟙 s x))
   
   [uniqueness_of_prod_measure]  Theorem
      
      ⊢ ∀X Y E G A B u v m m'.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ subset_class X E ∧
          subset_class Y G ∧ sigma_finite (X,E,u) ∧ sigma_finite (Y,G,v) ∧
          (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧
          (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧ A = sigma X E ∧
          B = sigma Y G ∧ measure_space (X,subsets A,u) ∧
          measure_space (Y,subsets B,v) ∧
          measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m) ∧
          measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m') ∧
          (∀s t. s ∈ E ∧ t ∈ G ⇒ m (fcp_cross s t) = u s * v t) ∧
          (∀s t. s ∈ E ∧ t ∈ G ⇒ m' (fcp_cross s t) = u s * v t) ⇒
          ∀x. x ∈ subsets (fcp_sigma A B) ⇒ m x = m' x
   
   [uniqueness_of_prod_measure']  Theorem
      
      ⊢ ∀X Y A B u v m m'.
          FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) ∧
          measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m') ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m (fcp_cross s t) = u s * v t) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m' (fcp_cross s t) = u s * v t) ⇒
          ∀x. x ∈ subsets (fcp_sigma (X,A) (Y,B)) ⇒ m x = m' x
   
   [uniqueness_of_prod_measure_general]  Theorem
      
      ⊢ ∀cons car cdr X Y E G A B u v m m'.
          pair_operation cons car cdr ∧ subset_class X E ∧
          subset_class Y G ∧ sigma_finite (X,E,u) ∧ sigma_finite (Y,G,v) ∧
          (∀s t. s ∈ E ∧ t ∈ E ⇒ s ∩ t ∈ E) ∧
          (∀s t. s ∈ G ∧ t ∈ G ⇒ s ∩ t ∈ G) ∧ A = sigma X E ∧
          B = sigma Y G ∧ measure_space (X,subsets A,u) ∧
          measure_space (Y,subsets B,v) ∧
          measure_space
            (general_cross cons X Y,subsets (general_sigma cons A B),m) ∧
          measure_space
            (general_cross cons X Y,subsets (general_sigma cons A B),m') ∧
          (∀s t. s ∈ E ∧ t ∈ G ⇒ m (general_cross cons s t) = u s * v t) ∧
          (∀s t. s ∈ E ∧ t ∈ G ⇒ m' (general_cross cons s t) = u s * v t) ⇒
          ∀x. x ∈ subsets (general_sigma cons A B) ⇒ m x = m' x
   
   [uniqueness_of_prod_measure_general']  Theorem
      
      ⊢ ∀cons car cdr X Y A B u v m m'.
          pair_operation cons car cdr ∧
          sigma_finite_measure_space (X,A,u) ∧
          sigma_finite_measure_space (Y,B,v) ∧
          measure_space
            (general_cross cons X Y,
             subsets (general_sigma cons (X,A) (Y,B)),m) ∧
          measure_space
            (general_cross cons X Y,
             subsets (general_sigma cons (X,A) (Y,B)),m') ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m (general_cross cons s t) = u s * v t) ∧
          (∀s t. s ∈ A ∧ t ∈ B ⇒ m' (general_cross cons s t) = u s * v t) ⇒
          ∀x. x ∈ subsets (general_sigma cons (X,A) (Y,B)) ⇒ m x = m' x
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1