Structure intrealTheory
signature intrealTheory =
sig
type thm = Thm.thm
(* Definitions *)
val INT_CEILING_def : thm
val INT_FLOOR_def : thm
val frac_def : thm
val is_int_def : thm
val real_of_int : thm
(* Theorems *)
val INT_CEILING : thm
val INT_CEILING' : thm
val INT_CEILING_ADD_NUM : thm
val INT_CEILING_BOUNDS : thm
val INT_CEILING_BOUNDS' : thm
val INT_CEILING_INT_FLOOR : thm
val INT_CEILING_NEG : thm
val INT_CEILING_SUB_NUM : thm
val INT_FLOOR : thm
val INT_FLOOR' : thm
val INT_FLOOR_ADD_NUM : thm
val INT_FLOOR_BOUNDS : thm
val INT_FLOOR_BOUNDS' : thm
val INT_FLOOR_EQNS : thm
val INT_FLOOR_MONO : thm
val INT_FLOOR_NEG : thm
val INT_FLOOR_SUB1 : thm
val INT_FLOOR_SUB_NUM : thm
val INT_FLOOR_SUC : thm
val INT_FLOOR_SUM : thm
val INT_FLOOR_SUM_NUM : thm
val INT_FLOOR_compute : thm
val ints_exist_in_gaps : thm
val is_int_alt : thm
val is_int_eq_frac_0 : thm
val is_int_thm : thm
val real_of_int_11 : thm
val real_of_int_add : thm
val real_of_int_def : thm
val real_of_int_le : thm
val real_of_int_lt : thm
val real_of_int_monotonic : thm
val real_of_int_mul : thm
val real_of_int_neg : thm
val real_of_int_num : thm
val real_of_int_sub : thm
val intreal_grammars : type_grammar.grammar * term_grammar.grammar
(*
[Omega] Parent theory of "intreal"
[int_arith] Parent theory of "intreal"
[real] Parent theory of "intreal"
[INT_CEILING_def] Definition
⊢ ∀x. ⌈x⌉ = LEAST_INT i. x ≤ real_of_int i
[INT_FLOOR_def] Definition
⊢ ∀x. ⌊x⌋ = LEAST_INT i. x < real_of_int (i + 1)
[frac_def] Definition
⊢ ∀x. frac x = x − real_of_int ⌊x⌋
[is_int_def] Definition
⊢ ∀x. is_int x ⇔ x = real_of_int ⌊x⌋
[real_of_int] Definition
⊢ ∀i. real_of_int i = if i < 0 then -&Num (-i) else &Num i
[INT_CEILING] Theorem
⊢ ∀r i. ⌈r⌉ = i ⇔ real_of_int (i − 1) < r ∧ r ≤ real_of_int i
[INT_CEILING'] Theorem
⊢ ∀r i. ⌈r⌉ = i ⇔ r ≤ real_of_int i ∧ real_of_int i < r + 1
[INT_CEILING_ADD_NUM] Theorem
⊢ ⌈x + &n⌉ = ⌈x⌉ + &n ∧ ⌈&n + x⌉ = ⌈x⌉ + &n
[INT_CEILING_BOUNDS] Theorem
⊢ ∀r. real_of_int (⌈r⌉ − 1) < r ∧ r ≤ real_of_int ⌈r⌉
[INT_CEILING_BOUNDS'] Theorem
⊢ ∀r. r ≤ real_of_int ⌈r⌉ ∧ real_of_int ⌈r⌉ < r + 1
[INT_CEILING_INT_FLOOR] Theorem
⊢ ∀r. ⌈r⌉ = (let i = ⌊r⌋ in if real_of_int i = r then i else i + 1)
[INT_CEILING_NEG] Theorem
⊢ ∀x. ⌈-x⌉ = -⌊x⌋
[INT_CEILING_SUB_NUM] Theorem
⊢ ⌈x − &n⌉ = ⌈x⌉ − &n ∧ ⌈&n − x⌉ = ⌈-x⌉ + &n
[INT_FLOOR] Theorem
⊢ ∀r i. ⌊r⌋ = i ⇔ real_of_int i ≤ r ∧ r < real_of_int (i + 1)
[INT_FLOOR'] Theorem
⊢ ∀r i. ⌊r⌋ = i ⇔ r − 1 < real_of_int i ∧ real_of_int i ≤ r
[INT_FLOOR_ADD_NUM] Theorem
⊢ ⌊x + &n⌋ = ⌊x⌋ + &n ∧ ⌊&n + x⌋ = ⌊x⌋ + &n
[INT_FLOOR_BOUNDS] Theorem
⊢ ∀r. real_of_int ⌊r⌋ ≤ r ∧ r < real_of_int (⌊r⌋ + 1)
[INT_FLOOR_BOUNDS'] Theorem
⊢ ∀r. r − 1 < real_of_int ⌊r⌋ ∧ real_of_int ⌊r⌋ ≤ r
[INT_FLOOR_EQNS] Theorem
⊢ (∀n. ⌊&n⌋ = &n) ∧ (∀n. ⌊-&n⌋ = -&n) ∧
(∀n m. 0 < m ⇒ ⌊&n / &m⌋ = &n / &m) ∧
∀n m. 0 < m ⇒ ⌊-&n / &m⌋ = -&n / &m
[INT_FLOOR_MONO] Theorem
⊢ x < y ⇒ ⌊x⌋ ≤ ⌊y⌋
[INT_FLOOR_NEG] Theorem
⊢ ∀x. ⌊-x⌋ = -⌈x⌉
[INT_FLOOR_SUB1] Theorem
⊢ ⌊x − 1⌋ = ⌊x⌋ − 1
[INT_FLOOR_SUB_NUM] Theorem
⊢ ⌊x − &n⌋ = ⌊x⌋ − &n ∧ ⌊&n − x⌋ = ⌊-x⌋ + &n
[INT_FLOOR_SUC] Theorem
⊢ ⌊x + 1⌋ = ⌊x⌋ + 1
[INT_FLOOR_SUM] Theorem
⊢ ⌊x + real_of_int y⌋ = ⌊x⌋ + y ∧ ⌊real_of_int y + x⌋ = ⌊x⌋ + y
[INT_FLOOR_SUM_NUM] Theorem
⊢ ⌊x + &n⌋ = ⌊x⌋ + &n ∧ ⌊&n + x⌋ = ⌊x⌋ + &n
[INT_FLOOR_compute] Theorem
⊢ ⌊&n⌋ = &n ∧ ⌊-&n⌋ = -&n ∧
⌊&n / &NUMERAL (BIT1 m)⌋ = &n / &NUMERAL (BIT1 m) ∧
⌊&n / &NUMERAL (BIT2 m)⌋ = &n / &NUMERAL (BIT2 m) ∧
⌊-&n / &NUMERAL (BIT1 m)⌋ = -&n / &NUMERAL (BIT1 m) ∧
⌊-&n / &NUMERAL (BIT2 m)⌋ = -&n / &NUMERAL (BIT2 m)
[ints_exist_in_gaps] Theorem
⊢ ∀a b. a + 1 < b ⇒ ∃i. a < real_of_int i ∧ real_of_int i < b
[is_int_alt] Theorem
⊢ ∀x. is_int x ⇔ x = real_of_int ⌈x⌉
[is_int_eq_frac_0] Theorem
⊢ ∀x. is_int x ⇔ frac x = 0
[is_int_thm] Theorem
⊢ ∀x. is_int x ⇔ ⌊x⌋ = ⌈x⌉
[real_of_int_11] Theorem
⊢ real_of_int m = real_of_int n ⇔ m = n
[real_of_int_add] Theorem
⊢ real_of_int (m + n) = real_of_int m + real_of_int n
[real_of_int_def] Theorem
⊢ ∀i. real_of_int i = if i < 0 then -&Num (-i) else &Num i
[real_of_int_le] Theorem
⊢ real_of_int m ≤ real_of_int n ⇔ m ≤ n
[real_of_int_lt] Theorem
⊢ real_of_int m < real_of_int n ⇔ m < n
[real_of_int_monotonic] Theorem
⊢ ∀i j. i < j ⇒ real_of_int i < real_of_int j
[real_of_int_mul] Theorem
⊢ real_of_int (m * n) = real_of_int m * real_of_int n
[real_of_int_neg] Theorem
⊢ real_of_int (-m) = -real_of_int m
[real_of_int_num] Theorem
⊢ real_of_int (&n) = &n
[real_of_int_sub] Theorem
⊢ real_of_int (m − n) = real_of_int m − real_of_int n
*)
end
HOL 4, Trindemossen-1