Structure integralTheory


Source File Identifier index Theory binding index

signature integralTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val Dint : thm
    val division : thm
    val dsize : thm
    val fine : thm
    val gauge : thm
    val integrable : thm
    val integral : thm
    val rsum : thm
    val tdiv : thm
  
  (*  Theorems  *)
    val CONT_UNIFORM : thm
    val DINT_0 : thm
    val DINT_ADD : thm
    val DINT_CMUL : thm
    val DINT_COMBINE : thm
    val DINT_CONST : thm
    val DINT_DELTA : thm
    val DINT_DELTA_LEFT : thm
    val DINT_DELTA_RIGHT : thm
    val DINT_EQ : thm
    val DINT_FINITE_SPIKE : thm
    val DINT_INTEGRAL : thm
    val DINT_LE : thm
    val DINT_LINEAR : thm
    val DINT_NEG : thm
    val DINT_POINT_SPIKE : thm
    val DINT_SUB : thm
    val DINT_TRIANGLE : thm
    val DINT_UNIQ : thm
    val DINT_WRONG : thm
    val DIVISION_0 : thm
    val DIVISION_1 : thm
    val DIVISION_APPEND : thm
    val DIVISION_APPEND_STRONG : thm
    val DIVISION_BOUNDS : thm
    val DIVISION_DSIZE_EQ : thm
    val DIVISION_DSIZE_EQ_ALT : thm
    val DIVISION_DSIZE_GE : thm
    val DIVISION_DSIZE_LE : thm
    val DIVISION_EQ : thm
    val DIVISION_EXISTS : thm
    val DIVISION_GT : thm
    val DIVISION_INTERMEDIATE : thm
    val DIVISION_INTERMEDIATE' : thm
    val DIVISION_LBOUND : thm
    val DIVISION_LBOUND_LT : thm
    val DIVISION_LE : thm
    val DIVISION_LE_SUC : thm
    val DIVISION_LHS : thm
    val DIVISION_LT : thm
    val DIVISION_LT_GEN : thm
    val DIVISION_MONO_LE : thm
    val DIVISION_MONO_LE_SUC : thm
    val DIVISION_RHS : thm
    val DIVISION_SINGLE : thm
    val DIVISION_THM : thm
    val DIVISION_UBOUND : thm
    val DIVISION_UBOUND_LT : thm
    val DSIZE_EQ : thm
    val Dint_has_integral : thm
    val FINE_MIN : thm
    val FTC1 : thm
    val GAUGE_MIN : thm
    val GAUGE_MIN_FINITE : thm
    val INTEGRABLE_ADD : thm
    val INTEGRABLE_CAUCHY : thm
    val INTEGRABLE_CMUL : thm
    val INTEGRABLE_COMBINE : thm
    val INTEGRABLE_CONST : thm
    val INTEGRABLE_CONTINUOUS : thm
    val INTEGRABLE_DINT : thm
    val INTEGRABLE_LIMIT : thm
    val INTEGRABLE_POINT_SPIKE : thm
    val INTEGRABLE_SPLIT_SIDES : thm
    val INTEGRABLE_SUBINTERVAL : thm
    val INTEGRABLE_SUBINTERVAL_LEFT : thm
    val INTEGRABLE_SUBINTERVAL_RIGHT : thm
    val INTEGRAL_0 : thm
    val INTEGRAL_ADD : thm
    val INTEGRAL_BY_PARTS : thm
    val INTEGRAL_CMUL : thm
    val INTEGRAL_COMBINE : thm
    val INTEGRAL_CONST : thm
    val INTEGRAL_EQ : thm
    val INTEGRAL_LE : thm
    val INTEGRAL_MVT1 : thm
    val INTEGRAL_NULL : thm
    val INTEGRAL_SUB : thm
    val INTEGRATION_BY_PARTS : thm
    val RSUM_BOUND : thm
    val RSUM_DIFF_BOUND : thm
    val STRADDLE_LEMMA : thm
    val SUP_INTERVAL : thm
    val TDIV_BOUNDS : thm
    val TDIV_LE : thm
    val gauge_alt : thm
    val gauge_alt_univ : thm
    val integrable_eq_integrable_on : thm
    val integral_new_to_old : thm
    val integral_old_to_new : thm
  
  val integral_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [integration] Parent theory of "integral"
   
   [powser] Parent theory of "integral"
   
   [Dint]  Definition
      
      ⊢ ∀a b f k.
          Dint (a,b) f k ⇔
          ∀e. 0 < e ⇒
              ∃g. gauge (λx. a ≤ x ∧ x ≤ b) g ∧
                  ∀D p.
                    tdiv (a,b) (D,p) ∧ fine g (D,p) ⇒
                    abs (rsum (D,p) f − k) < e
   
   [division]  Definition
      
      ⊢ ∀a b D.
          division (a,b) D ⇔
          D 0 = a ∧ ∃N. (∀n. n < N ⇒ D n < D (SUC n)) ∧ ∀n. n ≥ N ⇒ D n = b
   
   [dsize]  Definition
      
      ⊢ ∀D. dsize D =
            @N. (∀n. n < N ⇒ D n < D (SUC n)) ∧ ∀n. n ≥ N ⇒ D n = D N
   
   [fine]  Definition
      
      ⊢ ∀g D p. fine g (D,p) ⇔ ∀n. n < dsize D ⇒ D (SUC n) − D n < g (p n)
   
   [gauge]  Definition
      
      ⊢ ∀E g. gauge E g ⇔ ∀x. E x ⇒ 0 < g x
   
   [integrable]  Definition
      
      ⊢ ∀a b f. integrable (a,b) f ⇔ ∃i. Dint (a,b) f i
   
   [integral]  Definition
      
      ⊢ ∀a b f. integral (a,b) f = @i. Dint (a,b) f i
   
   [rsum]  Definition
      
      ⊢ ∀D p f.
          rsum (D,p) f = sum (0,dsize D) (λn. f (p n) * (D (SUC n) − D n))
   
   [tdiv]  Definition
      
      ⊢ ∀a b D p.
          tdiv (a,b) (D,p) ⇔
          division (a,b) D ∧ ∀n. D n ≤ p n ∧ p n ≤ D (SUC n)
   
   [CONT_UNIFORM]  Theorem
      
      ⊢ ∀f a b.
          a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
          ∀e. 0 < e ⇒
              ∃d. 0 < d ∧
                  ∀x y.
                    a ≤ x ∧ x ≤ b ∧ a ≤ y ∧ y ≤ b ∧ abs (x − y) < d ⇒
                    abs (f x − f y) < e
   
   [DINT_0]  Theorem
      
      ⊢ ∀a b. Dint (a,b) (λx. 0) 0
   
   [DINT_ADD]  Theorem
      
      ⊢ ∀f g a b i j.
          Dint (a,b) f i ∧ Dint (a,b) g j ⇒
          Dint (a,b) (λx. f x + g x) (i + j)
   
   [DINT_CMUL]  Theorem
      
      ⊢ ∀f a b c i. Dint (a,b) f i ⇒ Dint (a,b) (λx. c * f x) (c * i)
   
   [DINT_COMBINE]  Theorem
      
      ⊢ ∀f a b c i j.
          a ≤ b ∧ b ≤ c ∧ Dint (a,b) f i ∧ Dint (b,c) f j ⇒
          Dint (a,c) f (i + j)
   
   [DINT_CONST]  Theorem
      
      ⊢ ∀a b c. Dint (a,b) (λx. c) (c * (b − a))
   
   [DINT_DELTA]  Theorem
      
      ⊢ ∀a b c. Dint (a,b) (λx. if x = c then 1 else 0) 0
   
   [DINT_DELTA_LEFT]  Theorem
      
      ⊢ ∀a b. Dint (a,b) (λx. if x = a then 1 else 0) 0
   
   [DINT_DELTA_RIGHT]  Theorem
      
      ⊢ ∀a b. Dint (a,b) (λx. if x = b then 1 else 0) 0
   
   [DINT_EQ]  Theorem
      
      ⊢ ∀f g a b i j.
          a ≤ b ∧ Dint (a,b) f i ∧ Dint (a,b) g j ∧
          (∀x. a ≤ x ∧ x ≤ b ⇒ f x = g x) ⇒
          i = j
   
   [DINT_FINITE_SPIKE]  Theorem
      
      ⊢ ∀f g a b s i.
          FINITE s ∧ (∀x. a ≤ x ∧ x ≤ b ∧ x ∉ s ⇒ f x = g x) ∧
          Dint (a,b) f i ⇒
          Dint (a,b) g i
   
   [DINT_INTEGRAL]  Theorem
      
      ⊢ ∀f a b i. a ≤ b ∧ Dint (a,b) f i ⇒ integral (a,b) f = i
   
   [DINT_LE]  Theorem
      
      ⊢ ∀f g a b i j.
          a ≤ b ∧ Dint (a,b) f i ∧ Dint (a,b) g j ∧
          (∀x. a ≤ x ∧ x ≤ b ⇒ f x ≤ g x) ⇒
          i ≤ j
   
   [DINT_LINEAR]  Theorem
      
      ⊢ ∀f g a b i j.
          Dint (a,b) f i ∧ Dint (a,b) g j ⇒
          Dint (a,b) (λx. m * f x + n * g x) (m * i + n * j)
   
   [DINT_NEG]  Theorem
      
      ⊢ ∀f a b i. Dint (a,b) f i ⇒ Dint (a,b) (λx. -f x) (-i)
   
   [DINT_POINT_SPIKE]  Theorem
      
      ⊢ ∀f g a b c i.
          (∀x. a ≤ x ∧ x ≤ b ∧ x ≠ c ⇒ f x = g x) ∧ Dint (a,b) f i ⇒
          Dint (a,b) g i
   
   [DINT_SUB]  Theorem
      
      ⊢ ∀f g a b i j.
          Dint (a,b) f i ∧ Dint (a,b) g j ⇒
          Dint (a,b) (λx. f x − g x) (i − j)
   
   [DINT_TRIANGLE]  Theorem
      
      ⊢ ∀f a b i j.
          a ≤ b ∧ Dint (a,b) f i ∧ Dint (a,b) (λx. abs (f x)) j ⇒ abs i ≤ j
   
   [DINT_UNIQ]  Theorem
      
      ⊢ ∀a b f k1 k2. a ≤ b ∧ Dint (a,b) f k1 ∧ Dint (a,b) f k2 ⇒ k1 = k2
   
   [DINT_WRONG]  Theorem
      
      ⊢ ∀a b f i. b < a ⇒ Dint (a,b) f i
   
   [DIVISION_0]  Theorem
      
      ⊢ ∀a b. a = b ⇒ dsize (λn. if n = 0 then a else b) = 0
   
   [DIVISION_1]  Theorem
      
      ⊢ ∀a b. a < b ⇒ dsize (λn. if n = 0 then a else b) = 1
   
   [DIVISION_APPEND]  Theorem
      
      ⊢ ∀a b c.
          (∃D1 p1. tdiv (a,b) (D1,p1) ∧ fine g (D1,p1)) ∧
          (∃D2 p2. tdiv (b,c) (D2,p2) ∧ fine g (D2,p2)) ⇒
          ∃D p. tdiv (a,c) (D,p) ∧ fine g (D,p)
   
   [DIVISION_APPEND_STRONG]  Theorem
      
      ⊢ ∀a b c D1 p1 D2 p2.
          tdiv (a,b) (D1,p1) ∧ fine g (D1,p1) ∧ tdiv (b,c) (D2,p2) ∧
          fine g (D2,p2) ⇒
          ∃D p.
            tdiv (a,c) (D,p) ∧ fine g (D,p) ∧
            ∀f. rsum (D,p) f = rsum (D1,p1) f + rsum (D2,p2) f
   
   [DIVISION_BOUNDS]  Theorem
      
      ⊢ ∀d a b. division (a,b) d ⇒ ∀n. a ≤ d n ∧ d n ≤ b
   
   [DIVISION_DSIZE_EQ]  Theorem
      
      ⊢ ∀a b d n.
          division (a,b) d ∧ d n < d (SUC n) ∧ d (SUC (SUC n)) = d (SUC n) ⇒
          dsize d = SUC n
   
   [DIVISION_DSIZE_EQ_ALT]  Theorem
      
      ⊢ ∀a b d n.
          division (a,b) d ∧ d (SUC n) = d n ∧
          (∀i. i < n ⇒ d i < d (SUC i)) ⇒
          dsize d = n
   
   [DIVISION_DSIZE_GE]  Theorem
      
      ⊢ ∀a b d n. division (a,b) d ∧ d n < d (SUC n) ⇒ SUC n ≤ dsize d
   
   [DIVISION_DSIZE_LE]  Theorem
      
      ⊢ ∀a b d n. division (a,b) d ∧ d (SUC n) = d n ⇒ dsize d ≤ n
   
   [DIVISION_EQ]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ (a = b ⇔ dsize D = 0)
   
   [DIVISION_EXISTS]  Theorem
      
      ⊢ ∀a b g.
          a ≤ b ∧ gauge (λx. a ≤ x ∧ x ≤ b) g ⇒
          ∃D p. tdiv (a,b) (D,p) ∧ fine g (D,p)
   
   [DIVISION_GT]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D n < D (dsize D)
   
   [DIVISION_INTERMEDIATE]  Theorem
      
      ⊢ ∀d a b c.
          division (a,b) d ∧ a ≤ c ∧ c ≤ b ⇒
          ∃n. n ≤ dsize d ∧ d n ≤ c ∧ c ≤ d (SUC n)
   
   [DIVISION_INTERMEDIATE']  Theorem
      
      ⊢ ∀d a b c.
          division (a,b) d ∧ a ≤ c ∧ c ≤ b ∧ a < b ⇒
          ∃n. n < dsize d ∧ d n ≤ c ∧ c ≤ d (SUC n)
   
   [DIVISION_LBOUND]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ ∀r. a ≤ D r
   
   [DIVISION_LBOUND_LT]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ∧ dsize D ≠ 0 ⇒ ∀n. a < D (SUC n)
   
   [DIVISION_LE]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ a ≤ b
   
   [DIVISION_LE_SUC]  Theorem
      
      ⊢ ∀d a b. division (a,b) d ⇒ ∀n. d n ≤ d (SUC n)
   
   [DIVISION_LHS]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ D 0 = a
   
   [DIVISION_LT]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ ∀n. n < dsize D ⇒ D 0 < D (SUC n)
   
   [DIVISION_LT_GEN]  Theorem
      
      ⊢ ∀D a b m n. division (a,b) D ∧ m < n ∧ n ≤ dsize D ⇒ D m < D n
   
   [DIVISION_MONO_LE]  Theorem
      
      ⊢ ∀d a b. division (a,b) d ⇒ ∀m n. m ≤ n ⇒ d m ≤ d n
   
   [DIVISION_MONO_LE_SUC]  Theorem
      
      ⊢ ∀d a b. division (a,b) d ⇒ ∀n. d n ≤ d (SUC n)
   
   [DIVISION_RHS]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ D (dsize D) = b
   
   [DIVISION_SINGLE]  Theorem
      
      ⊢ ∀a b. a ≤ b ⇒ division (a,b) (λn. if n = 0 then a else b)
   
   [DIVISION_THM]  Theorem
      
      ⊢ ∀D a b.
          division (a,b) D ⇔
          D 0 = a ∧ (∀n. n < dsize D ⇒ D n < D (SUC n)) ∧
          ∀n. n ≥ dsize D ⇒ D n = b
   
   [DIVISION_UBOUND]  Theorem
      
      ⊢ ∀D a b. division (a,b) D ⇒ ∀r. D r ≤ b
   
   [DIVISION_UBOUND_LT]  Theorem
      
      ⊢ ∀D a b n. division (a,b) D ∧ n < dsize D ⇒ D n < b
   
   [DSIZE_EQ]  Theorem
      
      ⊢ ∀a b D.
          division (a,b) D ⇒
          sum (0,dsize D) (λn. D (SUC n) − D n) − (b − a) = 0
   
   [Dint_has_integral]  Theorem
      
      ⊢ ∀f a b k.
          a ≤ b ⇒ (Dint (a,b) f k ⇔ (f has_integral k) (interval [(a,b)]))
   
   [FINE_MIN]  Theorem
      
      ⊢ ∀g1 g2 D p.
          fine (λx. if g1 x < g2 x then g1 x else g2 x) (D,p) ⇒
          fine g1 (D,p) ∧ fine g2 (D,p)
   
   [FTC1]  Theorem
      
      ⊢ ∀f f' a b.
          a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ⇒
          Dint (a,b) f' (f b − f a)
   
   [GAUGE_MIN]  Theorem
      
      ⊢ ∀E g1 g2.
          gauge E g1 ∧ gauge E g2 ⇒
          gauge E (λx. if g1 x < g2 x then g1 x else g2 x)
   
   [GAUGE_MIN_FINITE]  Theorem
      
      ⊢ ∀s gs n.
          (∀m. m ≤ n ⇒ gauge s (gs m)) ⇒
          ∃g. gauge s g ∧
              ∀d p. fine g (d,p) ⇒ ∀m. m ≤ n ⇒ fine (gs m) (d,p)
   
   [INTEGRABLE_ADD]  Theorem
      
      ⊢ ∀f g a b.
          a ≤ b ∧ integrable (a,b) f ∧ integrable (a,b) g ⇒
          integrable (a,b) (λx. f x + g x)
   
   [INTEGRABLE_CAUCHY]  Theorem
      
      ⊢ ∀f a b.
          integrable (a,b) f ⇔
          ∀e. 0 < e ⇒
              ∃g. gauge (λx. a ≤ x ∧ x ≤ b) g ∧
                  ∀d1 p1 d2 p2.
                    tdiv (a,b) (d1,p1) ∧ fine g (d1,p1) ∧
                    tdiv (a,b) (d2,p2) ∧ fine g (d2,p2) ⇒
                    abs (rsum (d1,p1) f − rsum (d2,p2) f) < e
   
   [INTEGRABLE_CMUL]  Theorem
      
      ⊢ ∀f a b c.
          a ≤ b ∧ integrable (a,b) f ⇒ integrable (a,b) (λx. c * f x)
   
   [INTEGRABLE_COMBINE]  Theorem
      
      ⊢ ∀f a b c.
          a ≤ b ∧ b ≤ c ∧ integrable (a,b) f ∧ integrable (b,c) f ⇒
          integrable (a,c) f
   
   [INTEGRABLE_CONST]  Theorem
      
      ⊢ ∀a b c. integrable (a,b) (λx. c)
   
   [INTEGRABLE_CONTINUOUS]  Theorem
      
      ⊢ ∀f a b. (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒ integrable (a,b) f
   
   [INTEGRABLE_DINT]  Theorem
      
      ⊢ ∀f a b. integrable (a,b) f ⇒ Dint (a,b) f (integral (a,b) f)
   
   [INTEGRABLE_LIMIT]  Theorem
      
      ⊢ ∀f a b.
          (∀e. 0 < e ⇒
               ∃g. (∀x. a ≤ x ∧ x ≤ b ⇒ abs (f x − g x) ≤ e) ∧
                   integrable (a,b) g) ⇒
          integrable (a,b) f
   
   [INTEGRABLE_POINT_SPIKE]  Theorem
      
      ⊢ ∀f g a b c.
          (∀x. a ≤ x ∧ x ≤ b ∧ x ≠ c ⇒ f x = g x) ∧ integrable (a,b) f ⇒
          integrable (a,b) g
   
   [INTEGRABLE_SPLIT_SIDES]  Theorem
      
      ⊢ ∀f a b c.
          a ≤ c ∧ c ≤ b ∧ integrable (a,b) f ⇒
          ∃i. ∀e.
            0 < e ⇒
            ∃g. gauge (λx. a ≤ x ∧ x ≤ b) g ∧
                ∀d1 p1 d2 p2.
                  tdiv (a,c) (d1,p1) ∧ fine g (d1,p1) ∧
                  tdiv (c,b) (d2,p2) ∧ fine g (d2,p2) ⇒
                  abs (rsum (d1,p1) f + rsum (d2,p2) f − i) < e
   
   [INTEGRABLE_SUBINTERVAL]  Theorem
      
      ⊢ ∀f a b c d.
          a ≤ c ∧ c ≤ d ∧ d ≤ b ∧ integrable (a,b) f ⇒ integrable (c,d) f
   
   [INTEGRABLE_SUBINTERVAL_LEFT]  Theorem
      
      ⊢ ∀f a b c. a ≤ c ∧ c ≤ b ∧ integrable (a,b) f ⇒ integrable (a,c) f
   
   [INTEGRABLE_SUBINTERVAL_RIGHT]  Theorem
      
      ⊢ ∀f a b c. a ≤ c ∧ c ≤ b ∧ integrable (a,b) f ⇒ integrable (c,b) f
   
   [INTEGRAL_0]  Theorem
      
      ⊢ ∀a b. a ≤ b ⇒ integral (a,b) (λx. 0) = 0
   
   [INTEGRAL_ADD]  Theorem
      
      ⊢ ∀f g a b.
          a ≤ b ∧ integrable (a,b) f ∧ integrable (a,b) g ⇒
          integral (a,b) (λx. f x + g x) =
          integral (a,b) f + integral (a,b) g
   
   [INTEGRAL_BY_PARTS]  Theorem
      
      ⊢ ∀f g f' g' a b.
          a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ∧
          (∀x. a ≤ x ∧ x ≤ b ⇒ (g diffl g' x) x) ∧
          integrable (a,b) (λx. f' x * g x) ∧
          integrable (a,b) (λx. f x * g' x) ⇒
          integral (a,b) (λx. f x * g' x) =
          f b * g b − f a * g a − integral (a,b) (λx. f' x * g x)
   
   [INTEGRAL_CMUL]  Theorem
      
      ⊢ ∀f c a b.
          a ≤ b ∧ integrable (a,b) f ⇒
          integral (a,b) (λx. c * f x) = c * integral (a,b) f
   
   [INTEGRAL_COMBINE]  Theorem
      
      ⊢ ∀f a b c.
          a ≤ b ∧ b ≤ c ∧ integrable (a,c) f ⇒
          integral (a,c) f = integral (a,b) f + integral (b,c) f
   
   [INTEGRAL_CONST]  Theorem
      
      ⊢ ∀a b c. a ≤ b ⇒ integral (a,b) (λx. c) = c * (b − a)
   
   [INTEGRAL_EQ]  Theorem
      
      ⊢ ∀f g a b i.
          Dint (a,b) f i ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f x = g x) ⇒ Dint (a,b) g i
   
   [INTEGRAL_LE]  Theorem
      
      ⊢ ∀f g a b i j.
          a ≤ b ∧ integrable (a,b) f ∧ integrable (a,b) g ∧
          (∀x. a ≤ x ∧ x ≤ b ⇒ f x ≤ g x) ⇒
          integral (a,b) f ≤ integral (a,b) g
   
   [INTEGRAL_MVT1]  Theorem
      
      ⊢ ∀f a b.
          a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ f contl x) ⇒
          ∃x. a ≤ x ∧ x ≤ b ∧ integral (a,b) f = f x * (b − a)
   
   [INTEGRAL_NULL]  Theorem
      
      ⊢ ∀f a. Dint (a,a) f 0
   
   [INTEGRAL_SUB]  Theorem
      
      ⊢ ∀f g a b.
          a ≤ b ∧ integrable (a,b) f ∧ integrable (a,b) g ⇒
          integral (a,b) (λx. f x − g x) =
          integral (a,b) f − integral (a,b) g
   
   [INTEGRATION_BY_PARTS]  Theorem
      
      ⊢ ∀f g f' g' a b.
          a ≤ b ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ∧
          (∀x. a ≤ x ∧ x ≤ b ⇒ (g diffl g' x) x) ⇒
          Dint (a,b) (λx. f' x * g x + f x * g' x) (f b * g b − f a * g a)
   
   [RSUM_BOUND]  Theorem
      
      ⊢ ∀a b d p e f.
          tdiv (a,b) (d,p) ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ abs (f x) ≤ e) ⇒
          abs (rsum (d,p) f) ≤ e * (b − a)
   
   [RSUM_DIFF_BOUND]  Theorem
      
      ⊢ ∀a b d p e f g.
          tdiv (a,b) (d,p) ∧ (∀x. a ≤ x ∧ x ≤ b ⇒ abs (f x − g x) ≤ e) ⇒
          abs (rsum (d,p) f − rsum (d,p) g) ≤ e * (b − a)
   
   [STRADDLE_LEMMA]  Theorem
      
      ⊢ ∀f f' a b e.
          (∀x. a ≤ x ∧ x ≤ b ⇒ (f diffl f' x) x) ∧ 0 < e ⇒
          ∃g. gauge (λx. a ≤ x ∧ x ≤ b) g ∧
              ∀x u v.
                a ≤ u ∧ u ≤ x ∧ x ≤ v ∧ v ≤ b ∧ v − u < g x ⇒
                abs (f v − f u − f' x * (v − u)) ≤ e * (v − u)
   
   [SUP_INTERVAL]  Theorem
      
      ⊢ ∀P a b.
          (∃x. a ≤ x ∧ x ≤ b ∧ P x) ⇒
          ∃s. a ≤ s ∧ s ≤ b ∧ ∀y. y < s ⇔ ∃x. a ≤ x ∧ x ≤ b ∧ P x ∧ y < x
   
   [TDIV_BOUNDS]  Theorem
      
      ⊢ ∀d p a b.
          tdiv (a,b) (d,p) ⇒ ∀n. a ≤ d n ∧ d n ≤ b ∧ a ≤ p n ∧ p n ≤ b
   
   [TDIV_LE]  Theorem
      
      ⊢ ∀d p a b. tdiv (a,b) (d,p) ⇒ a ≤ b
   
   [gauge_alt]  Theorem
      
      ⊢ ∀c E g.
          0 < c ⇒
          (gauge E g ⇔ gauge (λx. ball (x,if E x then c * g x else 1)))
   
   [gauge_alt_univ]  Theorem
      
      ⊢ ∀c g. 0 < c ⇒ (gauge 𝕌(:real) g ⇔ gauge (λx. ball (x,c * g x)))
   
   [integrable_eq_integrable_on]  Theorem
      
      ⊢ ∀f a b.
          a ≤ b ⇒ (integrable (a,b) f ⇔ f integrable_on interval [(a,b)])
   
   [integral_new_to_old]  Theorem
      
      ⊢ ∀f a b.
          a ≤ b ∧ f integrable_on interval [(a,b)] ⇒
          integration$integral (interval [(a,b)]) f = integral (a,b) f
   
   [integral_old_to_new]  Theorem
      
      ⊢ ∀f a b.
          a ≤ b ∧ integrable (a,b) f ⇒
          integral (a,b) f = integration$integral (interval [(a,b)]) f
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1