Structure combinTheory
signature combinTheory =
sig
type thm = Thm.thm
(* Definitions *)
val APP_DEF : thm
val ASSOC_DEF : thm
val COMM_DEF : thm
val C_DEF : thm
val EXTENSIONAL_def : thm
val FAIL_DEF : thm
val FCOMM_DEF : thm
val I_DEF : thm
val K_DEF : thm
val LEFT_ID_DEF : thm
val MONOID_DEF : thm
val RESTRICTION : thm
val RIGHT_ID_DEF : thm
val S_DEF : thm
val UPDATE_def : thm
val W_DEF : thm
val o_DEF : thm
(* Theorems *)
val APPLY_UPDATE_ID : thm
val APPLY_UPDATE_THM : thm
val ASSOC_CONJ : thm
val ASSOC_DISJ : thm
val ASSOC_SYM : thm
val C_ABS_L : thm
val C_THM : thm
val EXTENSIONAL_RESTRICTION : thm
val FAIL_THM : thm
val FCOMM_ASSOC : thm
val GEN_LET_RAND : thm
val GEN_LET_RATOR : thm
val GEN_literal_case_RAND : thm
val GEN_literal_case_RATOR : thm
val IN_EXTENSIONAL : thm
val IN_EXTENSIONAL_UNDEFINED : thm
val I_EQ_IDABS : thm
val I_THM : thm
val I_o_ID : thm
val K_PARTIAL : thm
val K_THM : thm
val K_o_THM : thm
val LET_FORALL_ELIM : thm
val MONOID_CONJ_T : thm
val MONOID_DISJ_F : thm
val RESTRICTION_DEFINED : thm
val RESTRICTION_EQ : thm
val RESTRICTION_THM : thm
val RESTRICTION_UNDEFINED : thm
val SAME_KEY_UPDATE_DIFFER : thm
val S_ABS_L : thm
val S_ABS_R : thm
val S_THM : thm
val UPD11_SAME_BASE : thm
val UPD11_SAME_KEY_AND_BASE : thm
val UPDATE_APPLY : thm
val UPDATE_APPLY1 : thm
val UPDATE_APPLY_ID : thm
val UPDATE_APPLY_ID_RWT : thm
val UPDATE_APPLY_IMP_ID : thm
val UPDATE_COMMUTES : thm
val UPDATE_EQ : thm
val UPD_SAME_KEY_UNWIND : thm
val W_THM : thm
val literal_case_FORALL_ELIM : thm
val o_ABS_L : thm
val o_ABS_R : thm
val o_ASSOC : thm
val o_ASSOC' : thm
val o_CONG : thm
val o_THM : thm
val combin_grammars : type_grammar.grammar * term_grammar.grammar
(*
[marker] Parent theory of "combin"
[APP_DEF] Definition
⊢ ∀x f. (x :> f) = f x
[ASSOC_DEF] Definition
⊢ ∀f. ASSOC f ⇔ ∀x y z. f x (f y z) = f (f x y) z
[COMM_DEF] Definition
⊢ ∀f. COMM f ⇔ ∀x y. f x y = f y x
[C_DEF] Definition
⊢ flip = (λf x y. f y x)
[EXTENSIONAL_def] Definition
⊢ ∀s f. EXTENSIONAL s f ⇔ ∀x. x ∉ s ⇒ f x = ARB
[FAIL_DEF] Definition
⊢ FAIL = (λx y. x)
[FCOMM_DEF] Definition
⊢ ∀f g. FCOMM f g ⇔ ∀x y z. g x (f y z) = f (g x y) z
[I_DEF] Definition
⊢ I = S K K
[K_DEF] Definition
⊢ K = (λx y. x)
[LEFT_ID_DEF] Definition
⊢ ∀f e. LEFT_ID f e ⇔ ∀x. f e x = x
[MONOID_DEF] Definition
⊢ ∀f e. MONOID f e ⇔ ASSOC f ∧ RIGHT_ID f e ∧ LEFT_ID f e
[RESTRICTION] Definition
⊢ ∀s f x. RESTRICTION s f x = if x ∈ s then f x else ARB
[RIGHT_ID_DEF] Definition
⊢ ∀f e. RIGHT_ID f e ⇔ ∀x. f x e = x
[S_DEF] Definition
⊢ S = (λf g x. f x (g x))
[UPDATE_def] Definition
⊢ ∀a b. (a =+ b) = (λf c. if a = c then b else f c)
[W_DEF] Definition
⊢ W = (λf x. f x x)
[o_DEF] Definition
⊢ ∀f g. f ∘ g = (λx. f (g x))
[APPLY_UPDATE_ID] Theorem
⊢ ∀f a. f⦇a ↦ f a⦈ = f
[APPLY_UPDATE_THM] Theorem
⊢ ∀f a b c. f⦇a ↦ b⦈ c = if a = c then b else f c
[ASSOC_CONJ] Theorem
⊢ ASSOC $/\
[ASSOC_DISJ] Theorem
⊢ ASSOC $\/
[ASSOC_SYM] Theorem
⊢ ∀f. ASSOC f ⇔ ∀x y z. f (f x y) z = f x (f y z)
[C_ABS_L] Theorem
⊢ flip (λx. f x) y = (λx. f x y)
[C_THM] Theorem
⊢ ∀f x y. flip f x y = f y x
[EXTENSIONAL_RESTRICTION] Theorem
⊢ ∀s f. EXTENSIONAL s (RESTRICTION s f)
[FAIL_THM] Theorem
⊢ FAIL x y = x
[FCOMM_ASSOC] Theorem
⊢ ∀f. FCOMM f f ⇔ ASSOC f
[GEN_LET_RAND] Theorem
⊢ P (LET f v) = LET (P ∘ f) v
[GEN_LET_RATOR] Theorem
⊢ LET f v x = LET (flip f x) v
[GEN_literal_case_RAND] Theorem
⊢ P (literal_case f v) = literal_case (P ∘ f) v
[GEN_literal_case_RATOR] Theorem
⊢ literal_case f v x = literal_case (flip f x) v
[IN_EXTENSIONAL] Theorem
⊢ ∀s f. f ∈ EXTENSIONAL s ⇔ ∀x. x ∉ s ⇒ f x = ARB
[IN_EXTENSIONAL_UNDEFINED] Theorem
⊢ ∀s f x. f ∈ EXTENSIONAL s ∧ x ∉ s ⇒ f x = ARB
[I_EQ_IDABS] Theorem
⊢ I = (λx. x)
[I_THM] Theorem
⊢ ∀x. I x = x
[I_o_ID] Theorem
⊢ ∀f. I ∘ f = f ∧ f ∘ I = f
[K_PARTIAL] Theorem
⊢ ∀x. K x = (λz. x)
[K_THM] Theorem
⊢ ∀x y. K x y = x
[K_o_THM] Theorem
⊢ (∀f v. K v ∘ f = K v) ∧ ∀f v. f ∘ K v = K (f v)
[LET_FORALL_ELIM] Theorem
⊢ LET f v ⇔ $! (S ($==> ∘ Abbrev ∘ flip $= v) f)
[MONOID_CONJ_T] Theorem
⊢ MONOID $/\ T
[MONOID_DISJ_F] Theorem
⊢ MONOID $\/ F
[RESTRICTION_DEFINED] Theorem
⊢ ∀s f x. x ∈ s ⇒ RESTRICTION s f x = f x
[RESTRICTION_EQ] Theorem
⊢ ∀s f x y. x ∈ s ∧ f x = y ⇒ RESTRICTION s f x = y
[RESTRICTION_THM] Theorem
⊢ ∀s f. RESTRICTION s f = (λx. if x ∈ s then f x else ARB)
[RESTRICTION_UNDEFINED] Theorem
⊢ ∀s f x. x ∉ s ⇒ RESTRICTION s f x = ARB
[SAME_KEY_UPDATE_DIFFER] Theorem
⊢ ∀f1 f2 a b c. b ≠ c ⇒ f⦇a ↦ b⦈ ≠ f⦇a ↦ c⦈
[S_ABS_L] Theorem
⊢ S (λx. f x) g = (λx. f x (g x))
[S_ABS_R] Theorem
⊢ S f (λx. g x) = (λx. f x (g x))
[S_THM] Theorem
⊢ ∀f g x. S f g x = f x (g x)
[UPD11_SAME_BASE] Theorem
⊢ ∀f a b c d.
f⦇a ↦ c⦈ = f⦇b ↦ d⦈ ⇔
a = b ∧ c = d ∨ a ≠ b ∧ f⦇a ↦ c⦈ = f ∧ f⦇b ↦ d⦈ = f
[UPD11_SAME_KEY_AND_BASE] Theorem
⊢ ∀f a b c. f⦇a ↦ b⦈ = f⦇a ↦ c⦈ ⇔ b = c
[UPDATE_APPLY] Theorem
⊢ (∀a x f. f⦇a ↦ x⦈ a = x) ∧ ∀a b x f. a ≠ b ⇒ f⦇a ↦ x⦈ b = f b
[UPDATE_APPLY1] Theorem
⊢ ∀a x f. f⦇a ↦ x⦈ a = x
[UPDATE_APPLY_ID] Theorem
⊢ ∀f a b. f a = b ⇔ f⦇a ↦ b⦈ = f
[UPDATE_APPLY_ID_RWT] Theorem
⊢ (∀f a b. f⦇a ↦ b⦈ = f ⇔ f a = b) ∧ ∀f a b. f = f⦇a ↦ b⦈ ⇔ f a = b
[UPDATE_APPLY_IMP_ID] Theorem
⊢ ∀f b a. f a = b ⇒ f⦇a ↦ b⦈ = f
[UPDATE_COMMUTES] Theorem
⊢ ∀f a b c d. a ≠ b ⇒ f⦇a ↦ c; b ↦ d⦈ = f⦇b ↦ d; a ↦ c⦈
[UPDATE_EQ] Theorem
⊢ ∀f a b c. f⦇a ↦ c; a ↦ b⦈ = f⦇a ↦ c⦈
[UPD_SAME_KEY_UNWIND] Theorem
⊢ ∀f1 f2 a b c.
f1⦇a ↦ b⦈ = f2⦇a ↦ c⦈ ⇒ b = c ∧ ∀v. f1⦇a ↦ v⦈ = f2⦇a ↦ v⦈
[W_THM] Theorem
⊢ ∀f x. W f x = f x x
[literal_case_FORALL_ELIM] Theorem
⊢ literal_case f v ⇔ $! (S ($==> ∘ Abbrev ∘ flip $= v) f)
[o_ABS_L] Theorem
⊢ (λx. f x) ∘ g = (λx. f (g x))
[o_ABS_R] Theorem
⊢ f ∘ (λx. g x) = (λx. f (g x))
[o_ASSOC] Theorem
⊢ ∀f g h. f ∘ g ∘ h = (f ∘ g) ∘ h
[o_ASSOC'] Theorem
⊢ ∀f g h. (f ∘ g) ∘ h = f ∘ g ∘ h
[o_CONG] Theorem
⊢ ∀a1 a2 g1 g2 f1 f2.
a1 = a2 ∧ (∀x. x = a2 ⇒ g1 x = g2 x) ∧
(∀y. y = g2 a2 ⇒ f1 y = f2 y) ⇒
(f1 ∘ g1) a1 = (f2 ∘ g2) a2
[o_THM] Theorem
⊢ ∀f g x. (f ∘ g) x = f (g x)
*)
end
HOL 4, Trindemossen-1