Structure basis_emitTheory
signature basis_emitTheory =
sig
type thm = Thm.thm
(* Axioms *)
val EXPi : thm
val MULi : thm
val SUMi : thm
val dimindexi : thm
(* Definitions *)
val FCPi_def_primitive : thm
val IS_EMPTY_def : thm
val fromNum_def_primitive : thm
val i2w_itself_def_primitive : thm
val mk_fcp_def : thm
val neg_int_of_num_def : thm
val sw2sw_itself_def : thm
val w2w_itself_def : thm
val word_concat_itself_def : thm
val word_eq_def : thm
val word_extract_itself_def : thm
val word_index_def : thm
(* Theorems *)
val FCPi_def : thm
val FCPi_ind : thm
val IS_EMPTY_REWRITE : thm
val fromNum_def : thm
val fromNum_ind : thm
val i2w_itself_def : thm
val i2w_itself_ind : thm
val basis_emit_grammars : type_grammar.grammar * term_grammar.grammar
val WORDS_EMIT_RULE : thm -> thm
(*
[finite_map] Parent theory of "basis_emit"
[integer_word] Parent theory of "basis_emit"
[dimindexi] Axiom
[oracles: ] [axioms: dimindexi] [] ⊢ dimindex (ITSELF a) = a
[SUMi] Axiom
[oracles: ] [axioms: SUMi] []
⊢ SUMi (ITSELF a,ITSELF b) = ITSELF (a + b)
[MULi] Axiom
[oracles: ] [axioms: MULi] []
⊢ MULi (ITSELF a,ITSELF b) = ITSELF (a * b)
[EXPi] Axiom
[oracles: ] [axioms: EXPi] []
⊢ EXPi (ITSELF a,ITSELF b) = ITSELF (a ** b)
[FCPi_def_primitive] Definition
⊢ FCPi = WFREC (@R. WF R) (λFCPi a. case a of (v,v1) => I ($FCP v))
[IS_EMPTY_def] Definition
⊢ ∀s. IS_EMPTY s ⇔ if s = ∅ then T else F
[fromNum_def_primitive] Definition
⊢ fromNum =
WFREC (@R. WF R)
(λfromNum a.
case a of (v,v1) => I (n2w_itself (v MOD dimword (:α),(:α))))
[i2w_itself_def_primitive] Definition
⊢ i2w_itself =
WFREC (@R. WF R) (λi2w_itself a. case a of (v,v1) => I (i2w v))
[mk_fcp_def] Definition
⊢ mk_fcp = FCPi
[neg_int_of_num_def] Definition
⊢ ∀n. neg_int_of_num n = -int_of_num (n + 1)
[sw2sw_itself_def] Definition
⊢ ∀w. sw2sw_itself (:α) w = sw2sw w
[w2w_itself_def] Definition
⊢ ∀w. w2w_itself (:α) w = w2w w
[word_concat_itself_def] Definition
⊢ ∀v w. word_concat_itself (:α) v w = v @@ w
[word_eq_def] Definition
⊢ ∀v w. word_eq v w ⇔ v = w
[word_extract_itself_def] Definition
⊢ ∀h l w. word_extract_itself (:α) h l w = (h >< l) w
[word_index_def] Definition
⊢ ∀w n. word_index w n ⇔ w ' n
[FCPi_def] Theorem
⊢ FCPi (f,(:β)) = $FCP f
[FCPi_ind] Theorem
⊢ ∀P. (∀f. P (f,(:β))) ⇒ ∀v v1. P (v,v1)
[IS_EMPTY_REWRITE] Theorem
⊢ (s = ∅ ⇔ IS_EMPTY s) ∧ (∅ = s ⇔ IS_EMPTY s)
[fromNum_def] Theorem
⊢ fromNum (n,(:α)) = n2w_itself (n MOD dimword (:α),(:α))
[fromNum_ind] Theorem
⊢ ∀P. (∀n. P (n,(:α))) ⇒ ∀v v1. P (v,v1)
[i2w_itself_def] Theorem
⊢ i2w_itself (i,(:α)) = i2w i
[i2w_itself_ind] Theorem
⊢ ∀P. (∀i. P (i,(:α))) ⇒ ∀v v1. P (v,v1)
*)
end
HOL 4, Trindemossen-1