Structure alistTheory
signature alistTheory =
sig
type thm = Thm.thm
(* Definitions *)
val ADELKEY_def : thm
val alist_range_def : thm
val alist_to_fmap_def : thm
val fmap_to_alist_def : thm
(* Theorems *)
val ADELKEY_AFUPDKEY : thm
val ADELKEY_AFUPDKEY_same : thm
val ADELKEY_unchanged : thm
val AFUPDKEY_ALOOKUP : thm
val AFUPDKEY_I : thm
val AFUPDKEY_comm : thm
val AFUPDKEY_def : thm
val AFUPDKEY_eq : thm
val AFUPDKEY_ind : thm
val AFUPDKEY_o : thm
val AFUPDKEY_unchanged : thm
val ALL_DISTINCT_FEVERY_alist_to_fmap : thm
val ALL_DISTINCT_fmap_to_alist_keys : thm
val ALOOKUP_ADELKEY : thm
val ALOOKUP_ALL_DISTINCT_EL : thm
val ALOOKUP_ALL_DISTINCT_MEM : thm
val ALOOKUP_ALL_DISTINCT_PERM_same : thm
val ALOOKUP_APPEND : thm
val ALOOKUP_APPEND_same : thm
val ALOOKUP_EQ_FLOOKUP : thm
val ALOOKUP_FAILS : thm
val ALOOKUP_FILTER : thm
val ALOOKUP_IN_FRANGE : thm
val ALOOKUP_LEAST_EL : thm
val ALOOKUP_MAP : thm
val ALOOKUP_MAP_2 : thm
val ALOOKUP_MEM : thm
val ALOOKUP_NONE : thm
val ALOOKUP_SOME_FAPPLY_alist_to_fmap : thm
val ALOOKUP_TABULATE : thm
val ALOOKUP_ZIP_MAP_SND : thm
val ALOOKUP_def : thm
val ALOOKUP_ind : thm
val ALOOKUP_prefix : thm
val FDOM_alist_to_fmap : thm
val FEVERY_alist_to_fmap : thm
val FLOOKUP_FUPDATE_LIST : thm
val FLOOKUP_FUPDATE_LIST_ALOOKUP_NONE : thm
val FLOOKUP_FUPDATE_LIST_ALOOKUP_SOME : thm
val FRANGE_alist_to_fmap_SUBSET : thm
val FUNION_alist_to_fmap : thm
val FUPDATE_LIST_EQ_APPEND_REVERSE : thm
val IN_FRANGE_alist_to_fmap_suff : thm
val LENGTH_AFUPDKEY : thm
val LENGTH_fmap_to_alist : thm
val MAP_FST_AFUPDKEY : thm
val MAP_KEYS_I : thm
val MAP_values_fmap_to_alist : thm
val MEM_ADELKEY : thm
val MEM_fmap_to_alist : thm
val MEM_fmap_to_alist_FLOOKUP : thm
val MEM_pair_fmap_to_alist_FLOOKUP : thm
val PERM_fmap_to_alist : thm
val alist_to_fmap_APPEND : thm
val alist_to_fmap_FAPPLY_MEM : thm
val alist_to_fmap_MAP : thm
val alist_to_fmap_MAP_matchable : thm
val alist_to_fmap_MAP_values : thm
val alist_to_fmap_PERM : thm
val alist_to_fmap_prefix : thm
val alist_to_fmap_thm : thm
val alist_to_fmap_to_alist : thm
val alist_to_fmap_to_alist_PERM : thm
val alookup_distinct_reverse : thm
val alookup_filter : thm
val alookup_stable_sorted : thm
val flookup_fupdate_list : thm
val fmap_to_alist_FEMPTY : thm
val fmap_to_alist_inj : thm
val fmap_to_alist_preserves_FDOM : thm
val fmap_to_alist_to_fmap : thm
val fupdate_list_funion : thm
val mem_to_flookup : thm
val set_MAP_FST_fmap_to_alist : thm
val alist_grammars : type_grammar.grammar * term_grammar.grammar
(*
[finite_map] Parent theory of "alist"
[ADELKEY_def] Definition
⊢ ∀k alist. ADELKEY k alist = FILTER (λp. FST p ≠ k) alist
[alist_range_def] Definition
⊢ ∀m. alist_range m = {v | ∃k. ALOOKUP m k = SOME v}
[alist_to_fmap_def] Definition
⊢ ∀s. alist_to_fmap s = FOLDR (λ(k,v) f. f |+ (k,v)) FEMPTY s
[fmap_to_alist_def] Definition
⊢ ∀s. fmap_to_alist s = MAP (λk. (k,s ' k)) (SET_TO_LIST (FDOM s))
[ADELKEY_AFUPDKEY] Theorem
⊢ ∀ls f x y.
x ≠ y ⇒ ADELKEY x (AFUPDKEY y f ls) = AFUPDKEY y f (ADELKEY x ls)
[ADELKEY_AFUPDKEY_same] Theorem
⊢ ∀fd f ls. ADELKEY fd (AFUPDKEY fd f ls) = ADELKEY fd ls
[ADELKEY_unchanged] Theorem
⊢ ∀x ls. ADELKEY x ls = ls ⇔ ¬MEM x (MAP FST ls)
[AFUPDKEY_ALOOKUP] Theorem
⊢ ALOOKUP (AFUPDKEY k2 f al) k1 =
case ALOOKUP al k1 of
NONE => NONE
| SOME v => if k1 = k2 then SOME (f v) else SOME v
[AFUPDKEY_I] Theorem
⊢ AFUPDKEY n I = I
[AFUPDKEY_comm] Theorem
⊢ ∀k1 k2 f1 f2 l.
k1 ≠ k2 ⇒
AFUPDKEY k2 f2 (AFUPDKEY k1 f1 l) =
AFUPDKEY k1 f1 (AFUPDKEY k2 f2 l)
[AFUPDKEY_def] Theorem
⊢ (∀k f. AFUPDKEY k f [] = []) ∧
∀v rest k' k f.
AFUPDKEY k f ((k',v)::rest) =
if k = k' then (k,f v)::rest else (k',v)::AFUPDKEY k f rest
[AFUPDKEY_eq] Theorem
⊢ ∀k f1 l f2.
(∀v. ALOOKUP l k = SOME v ⇒ f1 v = f2 v) ⇒
AFUPDKEY k f1 l = AFUPDKEY k f2 l
[AFUPDKEY_ind] Theorem
⊢ ∀P. (∀k f. P k f []) ∧
(∀k f k' v rest. (k ≠ k' ⇒ P k f rest) ⇒ P k f ((k',v)::rest)) ⇒
∀v v1 v2. P v v1 v2
[AFUPDKEY_o] Theorem
⊢ AFUPDKEY k f1 (AFUPDKEY k f2 al) = AFUPDKEY k (f1 ∘ f2) al
[AFUPDKEY_unchanged] Theorem
⊢ ∀k f alist.
(∀v. ALOOKUP alist k = SOME v ⇒ f v = v) ⇒
AFUPDKEY k f alist = alist
[ALL_DISTINCT_FEVERY_alist_to_fmap] Theorem
⊢ ALL_DISTINCT (MAP FST ls) ⇒
(FEVERY P (alist_to_fmap ls) ⇔ EVERY P ls)
[ALL_DISTINCT_fmap_to_alist_keys] Theorem
⊢ ∀fm. ALL_DISTINCT (MAP FST (fmap_to_alist fm))
[ALOOKUP_ADELKEY] Theorem
⊢ ∀al.
ALOOKUP (ADELKEY k1 al) k2 =
if k1 = k2 then NONE else ALOOKUP al k2
[ALOOKUP_ALL_DISTINCT_EL] Theorem
⊢ ∀ls n.
n < LENGTH ls ∧ ALL_DISTINCT (MAP FST ls) ⇒
ALOOKUP ls (FST (EL n ls)) = SOME (SND (EL n ls))
[ALOOKUP_ALL_DISTINCT_MEM] Theorem
⊢ ALL_DISTINCT (MAP FST al) ∧ MEM (k,v) al ⇒ ALOOKUP al k = SOME v
[ALOOKUP_ALL_DISTINCT_PERM_same] Theorem
⊢ ∀l1 l2.
ALL_DISTINCT (MAP FST l1) ∧ PERM (MAP FST l1) (MAP FST l2) ∧
set l1 = set l2 ⇒
ALOOKUP l1 = ALOOKUP l2
[ALOOKUP_APPEND] Theorem
⊢ ∀l1 l2 k.
ALOOKUP (l1 ⧺ l2) k =
case ALOOKUP l1 k of NONE => ALOOKUP l2 k | SOME v => SOME v
[ALOOKUP_APPEND_same] Theorem
⊢ ∀l1 l2 l.
ALOOKUP l1 = ALOOKUP l2 ⇒ ALOOKUP (l1 ⧺ l) = ALOOKUP (l2 ⧺ l)
[ALOOKUP_EQ_FLOOKUP] Theorem
⊢ FLOOKUP (alist_to_fmap al) = ALOOKUP al ∧
ALOOKUP (fmap_to_alist fm) = FLOOKUP fm
[ALOOKUP_FAILS] Theorem
⊢ ALOOKUP l x = NONE ⇔ ∀k v. MEM (k,v) l ⇒ k ≠ x
[ALOOKUP_FILTER] Theorem
⊢ ∀ls x.
ALOOKUP (FILTER (λ(k,v). P k) ls) x =
if P x then ALOOKUP ls x else NONE
[ALOOKUP_IN_FRANGE] Theorem
⊢ ∀ls k v. ALOOKUP ls k = SOME v ⇒ v ∈ FRANGE (alist_to_fmap ls)
[ALOOKUP_LEAST_EL] Theorem
⊢ ∀ls k.
ALOOKUP ls k =
if MEM k (MAP FST ls) then
SOME (EL (LEAST n. EL n (MAP FST ls) = k) (MAP SND ls))
else NONE
[ALOOKUP_MAP] Theorem
⊢ ∀f al.
ALOOKUP (MAP (λ(x,y). (x,f y)) al) = OPTION_MAP f ∘ ALOOKUP al
[ALOOKUP_MAP_2] Theorem
⊢ ∀f al x.
ALOOKUP (MAP (λ(x,y). (x,f x y)) al) x =
OPTION_MAP (f x) (ALOOKUP al x)
[ALOOKUP_MEM] Theorem
⊢ ∀al k v. ALOOKUP al k = SOME v ⇒ MEM (k,v) al
[ALOOKUP_NONE] Theorem
⊢ ∀l x. ALOOKUP l x = NONE ⇔ ¬MEM x (MAP FST l)
[ALOOKUP_SOME_FAPPLY_alist_to_fmap] Theorem
⊢ ∀al k v. ALOOKUP al k = SOME v ⇒ alist_to_fmap al ' k = v
[ALOOKUP_TABULATE] Theorem
⊢ MEM x l ⇒ ALOOKUP (MAP (λk. (k,f k)) l) x = SOME (f x)
[ALOOKUP_ZIP_MAP_SND] Theorem
⊢ ∀l1 l2 k f.
LENGTH l1 = LENGTH l2 ⇒
ALOOKUP (ZIP (l1,MAP f l2)) =
OPTION_MAP f ∘ ALOOKUP (ZIP (l1,l2))
[ALOOKUP_def] Theorem
⊢ (∀q. ALOOKUP [] q = NONE) ∧
∀y x t q.
ALOOKUP ((x,y)::t) q = if x = q then SOME y else ALOOKUP t q
[ALOOKUP_ind] Theorem
⊢ ∀P. (∀q. P [] q) ∧ (∀x y t q. (x ≠ q ⇒ P t q) ⇒ P ((x,y)::t) q) ⇒
∀v v1. P v v1
[ALOOKUP_prefix] Theorem
⊢ ∀ls k ls2.
(ALOOKUP ls k = SOME v ⇒ ALOOKUP (ls ⧺ ls2) k = SOME v) ∧
(ALOOKUP ls k = NONE ⇒ ALOOKUP (ls ⧺ ls2) k = ALOOKUP ls2 k)
[FDOM_alist_to_fmap] Theorem
⊢ ∀al. FDOM (alist_to_fmap al) = set (MAP FST al)
[FEVERY_alist_to_fmap] Theorem
⊢ EVERY P ls ⇒ FEVERY P (alist_to_fmap ls)
[FLOOKUP_FUPDATE_LIST] Theorem
⊢ ∀xs k m.
FLOOKUP (m |++ xs) k =
case ALOOKUP (REVERSE xs) k of
NONE => FLOOKUP m k
| SOME x => SOME x
[FLOOKUP_FUPDATE_LIST_ALOOKUP_NONE] Theorem
⊢ ALOOKUP ls k = NONE ⇒ FLOOKUP (fm |++ REVERSE ls) k = FLOOKUP fm k
[FLOOKUP_FUPDATE_LIST_ALOOKUP_SOME] Theorem
⊢ ALOOKUP ls k = SOME v ⇒ FLOOKUP (fm |++ REVERSE ls) k = SOME v
[FRANGE_alist_to_fmap_SUBSET] Theorem
⊢ FRANGE (alist_to_fmap ls) ⊆ IMAGE SND (set ls)
[FUNION_alist_to_fmap] Theorem
⊢ ∀ls fm. alist_to_fmap ls ⊌ fm = fm |++ REVERSE ls
[FUPDATE_LIST_EQ_APPEND_REVERSE] Theorem
⊢ ∀ls fm. fm |++ ls = alist_to_fmap (REVERSE ls ⧺ fmap_to_alist fm)
[IN_FRANGE_alist_to_fmap_suff] Theorem
⊢ (∀v. MEM v (MAP SND ls) ⇒ P v) ⇒
∀v. v ∈ FRANGE (alist_to_fmap ls) ⇒ P v
[LENGTH_AFUPDKEY] Theorem
⊢ ∀ls. LENGTH (AFUPDKEY k f ls) = LENGTH ls
[LENGTH_fmap_to_alist] Theorem
⊢ ∀fm. LENGTH (fmap_to_alist fm) = CARD (FDOM fm)
[MAP_FST_AFUPDKEY] Theorem
⊢ MAP FST (AFUPDKEY f k alist) = MAP FST alist
[MAP_KEYS_I] Theorem
⊢ ∀fm. MAP_KEYS I fm = fm
[MAP_values_fmap_to_alist] Theorem
⊢ ∀f fm.
MAP (λ(k,v). (k,f v)) (fmap_to_alist fm) =
fmap_to_alist (f o_f fm)
[MEM_ADELKEY] Theorem
⊢ ∀al. MEM (k1,v) (ADELKEY k2 al) ⇔ k1 ≠ k2 ∧ MEM (k1,v) al
[MEM_fmap_to_alist] Theorem
⊢ MEM (x,y) (fmap_to_alist fm) ⇔ x ∈ FDOM fm ∧ fm ' x = y
[MEM_fmap_to_alist_FLOOKUP] Theorem
⊢ ∀p fm. MEM p (fmap_to_alist fm) ⇔ FLOOKUP fm (FST p) = SOME (SND p)
[MEM_pair_fmap_to_alist_FLOOKUP] Theorem
⊢ ∀x y fm. MEM (x,y) (fmap_to_alist fm) ⇔ FLOOKUP fm x = SOME y
[PERM_fmap_to_alist] Theorem
⊢ PERM (fmap_to_alist fm1) (fmap_to_alist fm2) ⇔ fm1 = fm2
[alist_to_fmap_APPEND] Theorem
⊢ ∀l1 l2.
alist_to_fmap (l1 ⧺ l2) = alist_to_fmap l1 ⊌ alist_to_fmap l2
[alist_to_fmap_FAPPLY_MEM] Theorem
⊢ ∀al z.
z ∈ FDOM (alist_to_fmap al) ⇒ MEM (z,alist_to_fmap al ' z) al
[alist_to_fmap_MAP] Theorem
⊢ ∀f1 f2 al.
INJ f1 (set (MAP FST al)) 𝕌(:β) ⇒
alist_to_fmap (MAP (λ(x,y). (f1 x,f2 y)) al) =
MAP_KEYS f1 (f2 o_f alist_to_fmap al)
[alist_to_fmap_MAP_matchable] Theorem
⊢ ∀f1 f2 al mal v.
INJ f1 (set (MAP FST al)) 𝕌(:β) ∧
mal = MAP (λ(x,y). (f1 x,f2 y)) al ∧
v = MAP_KEYS f1 (f2 o_f alist_to_fmap al) ⇒
alist_to_fmap mal = v
[alist_to_fmap_MAP_values] Theorem
⊢ ∀f al.
alist_to_fmap (MAP (λ(k,v). (k,f v)) al) = f o_f alist_to_fmap al
[alist_to_fmap_PERM] Theorem
⊢ ∀l1 l2.
PERM l1 l2 ∧ ALL_DISTINCT (MAP FST l1) ⇒
alist_to_fmap l1 = alist_to_fmap l2
[alist_to_fmap_prefix] Theorem
⊢ ∀ls l1 l2.
alist_to_fmap l1 = alist_to_fmap l2 ⇒
alist_to_fmap (ls ⧺ l1) = alist_to_fmap (ls ⧺ l2)
[alist_to_fmap_thm] Theorem
⊢ alist_to_fmap [] = FEMPTY ∧
alist_to_fmap ((k,v)::t) = alist_to_fmap t |+ (k,v)
[alist_to_fmap_to_alist] Theorem
⊢ ∀al.
fmap_to_alist (alist_to_fmap al) =
MAP (λk. (k,THE (ALOOKUP al k))) (SET_TO_LIST (set (MAP FST al)))
[alist_to_fmap_to_alist_PERM] Theorem
⊢ ∀al.
ALL_DISTINCT (MAP FST al) ⇒
PERM (fmap_to_alist (alist_to_fmap al)) al
[alookup_distinct_reverse] Theorem
⊢ ∀l k.
ALL_DISTINCT (MAP FST l) ⇒ ALOOKUP (REVERSE l) k = ALOOKUP l k
[alookup_filter] Theorem
⊢ ∀f l x. ALOOKUP l x = ALOOKUP (FILTER (λ(x',y). x = x') l) x
[alookup_stable_sorted] Theorem
⊢ ∀R sort x l.
transitive R ∧ total R ∧ STABLE sort (inv_image R FST) ⇒
ALOOKUP (sort (inv_image R FST) l) x = ALOOKUP l x
[flookup_fupdate_list] Theorem
⊢ ∀l k m.
FLOOKUP (m |++ l) k =
case ALOOKUP (REVERSE l) k of
NONE => FLOOKUP m k
| SOME v => SOME v
[fmap_to_alist_FEMPTY] Theorem
⊢ fmap_to_alist FEMPTY = []
[fmap_to_alist_inj] Theorem
⊢ ∀f1 f2. fmap_to_alist f1 = fmap_to_alist f2 ⇒ f1 = f2
[fmap_to_alist_preserves_FDOM] Theorem
⊢ ∀fm1 fm2.
FDOM fm1 = FDOM fm2 ⇒
MAP FST (fmap_to_alist fm1) = MAP FST (fmap_to_alist fm2)
[fmap_to_alist_to_fmap] Theorem
⊢ alist_to_fmap (fmap_to_alist fm) = fm
[fupdate_list_funion] Theorem
⊢ ∀m l. m |++ l = FEMPTY |++ l ⊌ m
[mem_to_flookup] Theorem
⊢ ∀x y l.
ALL_DISTINCT (MAP FST l) ∧ MEM (x,y) l ⇒
FLOOKUP (FEMPTY |++ l) x = SOME y
[set_MAP_FST_fmap_to_alist] Theorem
⊢ set (MAP FST (fmap_to_alist fm)) = FDOM fm
*)
end
HOL 4, Trindemossen-1