Structure Satisfy
(*------------------------------------------------------------------------
* Satisfy
*
* depth-1 prolog unification for finding existential variables.
* Still needs a little more work.
*
* Try to satisfy a set of goals by unifying against a set of facts.
*
* EXAMPLES
*
* val tac = VALID (SATISFY_THEN ALL_TAC);
* tac ([`3 + 1 = 6`], --`?a b. a + 1 = b` ;
* tac ([`!x. x + 1 = 6`], --`?a b. a + 1 = b` ;
* tac ([`!P:'b. P = b`], --`?a b. Q (a:'a) = (b:'b)` ;
* tac ([`!P. P`], --`?a b. a + 1 = b` ;
* new_constant {Name="KKK",Ty=(==`:'a->'a->bool`==)} handle _ => ();
* tac ([`!a:'a. KKK a a`], --`?(x:'a). KKK x x` ;
* tac ([`!a:'a. KKK a a`,`(Q:'a -> 'a -> bool) n m`],
* --`?x y. KKK x x /\ (Q:'a->'a->bool) x y` ;
* tac ([`(P1:num->num->bool) e f`,
`(P2:num->num->bool) f g`,
`!g. (P3:num->num->bool) e g`],
--`?a b c. (P1:num->num->bool) a b /\
(P2:num->num->bool) b c /\
(P3:num->num->bool) a b`;
*
* SATISFY_PROVE [ASSUME `(T /\ F) = T`] `?a b. (a /\ F) = b` ;
* SATISFY_PROVE [`!x. x + 1 = 6`] `?a b. a + 1 = b` ;
* SATISFY_PROVE [`!P:'b. P = b`] `?a b. Q (a:'a) = (b:'b)` ;
* SATISFY_PROVE [`!P. P`] `?a b. a + 1 = b` ;
* SATISFY_PROVE [`!a:num. KKK a a`] `?(x:num). KKK x x` ;
* SATISFY_PROVE [`!a:'a. KKK a a`,`(Q:'a -> 'a -> bool) n m`]
* `?x y. KKK x x /\ (Q:'a->'a->bool) x y` ;
* SATISFY_PROVE (map ASSUME [--`KKK 3 4`--]) `?y. KKK 3 y` ;
* SATISFY_CONV (map ASSUME [--`KKK 3 4`--]) `?y. KKK 3 y` ;
* ASM_SIMP_RULE SATISFY_ss (mk_thm([--`KKK 3 4`--],--`?y. KKK 3 y`);
*
*--------------------------------------------------------------------*)
signature Satisfy = sig
type term = Term.term
type thm = Thm.thm
type conv = Abbrev.conv
type tactic = Abbrev.tactic
type factdb = term list * thm list
(* this may be hidden in the future *)
val satisfy : term list -> term list -> term list -> (term,term) Abbrev.subst
val SATISFY : factdb -> term -> thm
val SATISFY_CONV : factdb -> conv
val SATISFY_TAC : tactic
val add_facts : factdb -> thm list -> factdb
end (* sig *)
HOL 4, Trindemossen-1