Structure RealField
(* ========================================================================= *)
(* Calculation with rational-valued reals. (HOL-Light's calc_rat.ml) *)
(* *)
(* John Harrison, University of Cambridge Computer Laboratory *)
(* *)
(* (c) Copyright, University of Cambridge 1998 *)
(* (c) Copyright, John Harrison 1998-2007 *)
(* ========================================================================= *)
signature RealField =
sig
include Abbrev
type positivstellensatz = RealArith.positivstellensatz
(* One-step conversions for real operator with rational literals *)
val REAL_RAT_LE_CONV : conv
val REAL_RAT_LT_CONV : conv
val REAL_RAT_GE_CONV : conv
val REAL_RAT_GT_CONV : conv
val REAL_RAT_EQ_CONV : conv
val REAL_RAT_SGN_CONV : conv
val REAL_RAT_NEG_CONV : conv
val REAL_RAT_ABS_CONV : conv
val REAL_RAT_INV_CONV : conv
val REAL_RAT_ADD_CONV : conv
val REAL_RAT_SUB_CONV : conv
val REAL_RAT_MUL_CONV : conv
val REAL_RAT_DIV_CONV : conv
val REAL_RAT_POW_CONV : conv
val REAL_RAT_MAX_CONV : conv
val REAL_RAT_MIN_CONV : conv
(* Deep reduce-based conversions for all real operators *)
val REAL_RAT_REDUCE_CONV : conv
(* Polynomial (semi-ring) conversions for real operators *)
val REAL_POLY_NEG_CONV : conv
val REAL_POLY_ADD_CONV : conv
val REAL_POLY_SUB_CONV : conv
val REAL_POLY_MUL_CONV : conv
val REAL_POLY_POW_CONV : conv
val REAL_POLY_CONV : conv
val GEN_REAL_ARITH :
((thm list * thm list * thm list -> positivstellensatz -> thm) ->
thm list * thm list * thm list -> thm) -> term -> thm
(* Final version of REAL_ARITH, etc. *)
val REAL_ARITH : term -> thm
val REAL_ARITH_TAC : tactic
val REAL_ASM_ARITH_TAC : tactic
(* Basic ring and ideal conversions. *)
val REAL_RING : term -> thm
val real_ideal_cofactors : term list -> term -> term list
val REAL_IDEAL_CONV : term list -> term -> thm
(* A simple "field" rule. *)
val REAL_FIELD : term -> thm
val REAL_FIELD_TAC : tactic
val REAL_ASM_FIELD_TAC : tactic
end
HOL 4, Trindemossen-1