Structure EVAL_semiringTheory


Source File Identifier index Theory binding index

signature EVAL_semiringTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val is_semi_ring_def : thm
    val recordtype_semi_ring_seldef_SR0_def : thm
    val recordtype_semi_ring_seldef_SR0_fupd_def : thm
    val recordtype_semi_ring_seldef_SR1_def : thm
    val recordtype_semi_ring_seldef_SR1_fupd_def : thm
    val recordtype_semi_ring_seldef_SRM_def : thm
    val recordtype_semi_ring_seldef_SRM_fupd_def : thm
    val recordtype_semi_ring_seldef_SRP_def : thm
    val recordtype_semi_ring_seldef_SRP_fupd_def : thm
    val semi_ring_TY_DEF : thm
    val semi_ring_case_def : thm
    val semi_ring_size_def : thm
  
  (*  Theorems  *)
    val EXISTS_semi_ring : thm
    val FORALL_semi_ring : thm
    val datatype_semi_ring : thm
    val distr_left : thm
    val distr_right : thm
    val mult_assoc : thm
    val mult_one_left : thm
    val mult_one_right : thm
    val mult_permute : thm
    val mult_rotate : thm
    val mult_sym : thm
    val mult_zero_left : thm
    val mult_zero_right : thm
    val plus_assoc : thm
    val plus_permute : thm
    val plus_rotate : thm
    val plus_sym : thm
    val plus_zero_left : thm
    val plus_zero_right : thm
    val semi_ring_11 : thm
    val semi_ring_Axiom : thm
    val semi_ring_accessors : thm
    val semi_ring_accfupds : thm
    val semi_ring_case_cong : thm
    val semi_ring_case_eq : thm
    val semi_ring_component_equality : thm
    val semi_ring_fn_updates : thm
    val semi_ring_fupdcanon : thm
    val semi_ring_fupdcanon_comp : thm
    val semi_ring_fupdfupds : thm
    val semi_ring_fupdfupds_comp : thm
    val semi_ring_induction : thm
    val semi_ring_literal_11 : thm
    val semi_ring_literal_nchotomy : thm
    val semi_ring_nchotomy : thm
    val semi_ring_updates_eq_literal : thm
  
  val EVAL_semiring_grammars : type_grammar.grammar * term_grammar.grammar
  
  val IMPORT : abstraction.inst_infos ->
    { is_semi_ring_def : thm,
  recordtype_semi_ring_seldef_SR0_def : thm,
  recordtype_semi_ring_seldef_SR0_fupd_def : thm,
  recordtype_semi_ring_seldef_SR1_def : thm,
  recordtype_semi_ring_seldef_SR1_fupd_def : thm,
  recordtype_semi_ring_seldef_SRM_def : thm,
  recordtype_semi_ring_seldef_SRM_fupd_def : thm,
  recordtype_semi_ring_seldef_SRP_def : thm,
  recordtype_semi_ring_seldef_SRP_fupd_def : thm,
  semi_ring_case_def : thm,
  semi_ring_size_def : thm,
  semi_ring_TY_DEF : thm,
  datatype_semi_ring : thm,
  distr_left : thm,
  distr_right : thm,
  EXISTS_semi_ring : thm,
  FORALL_semi_ring : thm,
  mult_assoc : thm,
  mult_one_left : thm,
  mult_one_right : thm,
  mult_permute : thm,
  mult_rotate : thm,
  mult_sym : thm,
  mult_zero_left : thm,
  mult_zero_right : thm,
  plus_assoc : thm,
  plus_permute : thm,
  plus_rotate : thm,
  plus_sym : thm,
  plus_zero_left : thm,
  plus_zero_right : thm,
  semi_ring_11 : thm,
  semi_ring_accessors : thm,
  semi_ring_accfupds : thm,
  semi_ring_Axiom : thm,
  semi_ring_case_cong : thm,
  semi_ring_case_eq : thm,
  semi_ring_component_equality : thm,
  semi_ring_fn_updates : thm,
  semi_ring_fupdcanon : thm,
  semi_ring_fupdcanon_comp : thm,
  semi_ring_fupdfupds : thm,
  semi_ring_fupdfupds_comp : thm,
  semi_ring_induction : thm,
  semi_ring_literal_11 : thm,
  semi_ring_literal_nchotomy : thm,
  semi_ring_nchotomy : thm,
  semi_ring_updates_eq_literal : thm }
  
(*
   [indexedLists] Parent theory of "EVAL_semiring"
   
   [patternMatches] Parent theory of "EVAL_semiring"
   
   [is_semi_ring_def]  Definition
      
      ⊢ ∀r. is_semi_ring r ⇔
            (∀n m. r.SRP n m = r.SRP m n) ∧
            (∀n m p. r.SRP n (r.SRP m p) = r.SRP (r.SRP n m) p) ∧
            (∀n m. r.SRM n m = r.SRM m n) ∧
            (∀n m p. r.SRM n (r.SRM m p) = r.SRM (r.SRM n m) p) ∧
            (∀n. r.SRP r.SR0 n = n) ∧ (∀n. r.SRM r.SR1 n = n) ∧
            (∀n. r.SRM r.SR0 n = r.SR0) ∧
            ∀n m p. r.SRM (r.SRP n m) p = r.SRP (r.SRM n p) (r.SRM m p)
   
   [recordtype_semi_ring_seldef_SR0_def]  Definition
      
      ⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SR0 = a
   
   [recordtype_semi_ring_seldef_SR0_fupd_def]  Definition
      
      ⊢ ∀f1 a a0 f f0.
          semi_ring a a0 f f0 with SR0 updated_by f1 =
          semi_ring (f1 a) a0 f f0
   
   [recordtype_semi_ring_seldef_SR1_def]  Definition
      
      ⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SR1 = a0
   
   [recordtype_semi_ring_seldef_SR1_fupd_def]  Definition
      
      ⊢ ∀f1 a a0 f f0.
          semi_ring a a0 f f0 with SR1 updated_by f1 =
          semi_ring a (f1 a0) f f0
   
   [recordtype_semi_ring_seldef_SRM_def]  Definition
      
      ⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SRM = f0
   
   [recordtype_semi_ring_seldef_SRM_fupd_def]  Definition
      
      ⊢ ∀f1 a a0 f f0.
          semi_ring a a0 f f0 with SRM updated_by f1 =
          semi_ring a a0 f (f1 f0)
   
   [recordtype_semi_ring_seldef_SRP_def]  Definition
      
      ⊢ ∀a a0 f f0. (semi_ring a a0 f f0).SRP = f
   
   [recordtype_semi_ring_seldef_SRP_fupd_def]  Definition
      
      ⊢ ∀f1 a a0 f f0.
          semi_ring a a0 f f0 with SRP updated_by f1 =
          semi_ring a a0 (f1 f) f0
   
   [semi_ring_TY_DEF]  Definition
      
      ⊢ ∃rep.
          TYPE_DEFINITION
            (λa0'.
                 ∀ $var$('semi_ring').
                   (∀a0'.
                      (∃a0 a1 a2 a3.
                         a0' =
                         (λa0 a1 a2 a3.
                              ind_type$CONSTR 0 (a0,a1,a2,a3)
                                (λn. ind_type$BOTTOM)) a0 a1 a2 a3) ⇒
                      $var$('semi_ring') a0') ⇒
                   $var$('semi_ring') a0') rep
   
   [semi_ring_case_def]  Definition
      
      ⊢ ∀a0 a1 a2 a3 f.
          semi_ring_CASE (semi_ring a0 a1 a2 a3) f = f a0 a1 a2 a3
   
   [semi_ring_size_def]  Definition
      
      ⊢ ∀f a0 a1 a2 a3.
          semi_ring_size f (semi_ring a0 a1 a2 a3) = 1 + (f a0 + f a1)
   
   [EXISTS_semi_ring]  Theorem
      
      ⊢ ∀P. (∃s. P s) ⇔
            ∃a0 a f0 f. P <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
   
   [FORALL_semi_ring]  Theorem
      
      ⊢ ∀P. (∀s. P s) ⇔
            ∀a0 a f0 f. P <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
   
   [datatype_semi_ring]  Theorem
      
      ⊢ DATATYPE (record semi_ring SR0 SR1 SRP SRM)
   
   [distr_left]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀n m p. r.SRM (r.SRP n m) p = r.SRP (r.SRM n p) (r.SRM m p)
   
   [distr_right]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀m n p. r.SRM m (r.SRP n p) = r.SRP (r.SRM m n) (r.SRM m p)
   
   [mult_assoc]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀n m p. r.SRM n (r.SRM m p) = r.SRM (r.SRM n m) p
   
   [mult_one_left]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM r.SR1 n = n
   
   [mult_one_right]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM n r.SR1 = n
   
   [mult_permute]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀m n p. r.SRM (r.SRM m n) p = r.SRM (r.SRM m p) n
   
   [mult_rotate]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀m n p. r.SRM (r.SRM m n) p = r.SRM (r.SRM n p) m
   
   [mult_sym]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n m. r.SRM n m = r.SRM m n
   
   [mult_zero_left]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM r.SR0 n = r.SR0
   
   [mult_zero_right]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRM n r.SR0 = r.SR0
   
   [plus_assoc]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀n m p. r.SRP n (r.SRP m p) = r.SRP (r.SRP n m) p
   
   [plus_permute]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀m n p. r.SRP (r.SRP m n) p = r.SRP (r.SRP m p) n
   
   [plus_rotate]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒
            ∀m n p. r.SRP (r.SRP m n) p = r.SRP (r.SRP n p) m
   
   [plus_sym]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n m. r.SRP n m = r.SRP m n
   
   [plus_zero_left]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRP r.SR0 n = n
   
   [plus_zero_right]  Theorem
      
      ⊢ ∀r. is_semi_ring r ⇒ ∀n. r.SRP n r.SR0 = n
   
   [semi_ring_11]  Theorem
      
      ⊢ ∀a0 a1 a2 a3 a0' a1' a2' a3'.
          (semi_ring a0 a1 a2 a3 = semi_ring a0' a1' a2' a3') ⇔
          (a0 = a0') ∧ (a1 = a1') ∧ (a2 = a2') ∧ (a3 = a3')
   
   [semi_ring_Axiom]  Theorem
      
      ⊢ ∀f. ∃fn. ∀a0 a1 a2 a3. fn (semi_ring a0 a1 a2 a3) = f a0 a1 a2 a3
   
   [semi_ring_accessors]  Theorem
      
      ⊢ (∀a a0 f f0. (semi_ring a a0 f f0).SR0 = a) ∧
        (∀a a0 f f0. (semi_ring a a0 f f0).SR1 = a0) ∧
        (∀a a0 f f0. (semi_ring a a0 f f0).SRP = f) ∧
        ∀a a0 f f0. (semi_ring a a0 f f0).SRM = f0
   
   [semi_ring_accfupds]  Theorem
      
      ⊢ (∀s f. (s with SR1 updated_by f).SR0 = s.SR0) ∧
        (∀s f. (s with SRP updated_by f).SR0 = s.SR0) ∧
        (∀s f. (s with SRM updated_by f).SR0 = s.SR0) ∧
        (∀s f. (s with SR0 updated_by f).SR1 = s.SR1) ∧
        (∀s f. (s with SRP updated_by f).SR1 = s.SR1) ∧
        (∀s f. (s with SRM updated_by f).SR1 = s.SR1) ∧
        (∀s f. (s with SR0 updated_by f).SRP = s.SRP) ∧
        (∀s f. (s with SR1 updated_by f).SRP = s.SRP) ∧
        (∀s f. (s with SRM updated_by f).SRP = s.SRP) ∧
        (∀s f. (s with SR0 updated_by f).SRM = s.SRM) ∧
        (∀s f. (s with SR1 updated_by f).SRM = s.SRM) ∧
        (∀s f. (s with SRP updated_by f).SRM = s.SRM) ∧
        (∀s f. (s with SR0 updated_by f).SR0 = f s.SR0) ∧
        (∀s f. (s with SR1 updated_by f).SR1 = f s.SR1) ∧
        (∀s f. (s with SRP updated_by f).SRP = f s.SRP) ∧
        ∀s f. (s with SRM updated_by f).SRM = f s.SRM
   
   [semi_ring_case_cong]  Theorem
      
      ⊢ ∀M M' f.
          (M = M') ∧
          (∀a0 a1 a2 a3.
             (M' = semi_ring a0 a1 a2 a3) ⇒
             (f a0 a1 a2 a3 = f' a0 a1 a2 a3)) ⇒
          (semi_ring_CASE M f = semi_ring_CASE M' f')
   
   [semi_ring_case_eq]  Theorem
      
      ⊢ (semi_ring_CASE x f = v) ⇔
        ∃a a0 f' f0. (x = semi_ring a a0 f' f0) ∧ (f a a0 f' f0 = v)
   
   [semi_ring_component_equality]  Theorem
      
      ⊢ ∀s1 s2.
          (s1 = s2) ⇔
          (s1.SR0 = s2.SR0) ∧ (s1.SR1 = s2.SR1) ∧ (s1.SRP = s2.SRP) ∧
          (s1.SRM = s2.SRM)
   
   [semi_ring_fn_updates]  Theorem
      
      ⊢ (∀f1 a a0 f f0.
           semi_ring a a0 f f0 with SR0 updated_by f1 =
           semi_ring (f1 a) a0 f f0) ∧
        (∀f1 a a0 f f0.
           semi_ring a a0 f f0 with SR1 updated_by f1 =
           semi_ring a (f1 a0) f f0) ∧
        (∀f1 a a0 f f0.
           semi_ring a a0 f f0 with SRP updated_by f1 =
           semi_ring a a0 (f1 f) f0) ∧
        ∀f1 a a0 f f0.
          semi_ring a a0 f f0 with SRM updated_by f1 =
          semi_ring a a0 f (f1 f0)
   
   [semi_ring_fupdcanon]  Theorem
      
      ⊢ (∀s g f.
           s with <|SR1 updated_by f; SR0 updated_by g|> =
           s with <|SR0 updated_by g; SR1 updated_by f|>) ∧
        (∀s g f.
           s with <|SRP updated_by f; SR0 updated_by g|> =
           s with <|SR0 updated_by g; SRP updated_by f|>) ∧
        (∀s g f.
           s with <|SRP updated_by f; SR1 updated_by g|> =
           s with <|SR1 updated_by g; SRP updated_by f|>) ∧
        (∀s g f.
           s with <|SRM updated_by f; SR0 updated_by g|> =
           s with <|SR0 updated_by g; SRM updated_by f|>) ∧
        (∀s g f.
           s with <|SRM updated_by f; SR1 updated_by g|> =
           s with <|SR1 updated_by g; SRM updated_by f|>) ∧
        ∀s g f.
          s with <|SRM updated_by f; SRP updated_by g|> =
          s with <|SRP updated_by g; SRM updated_by f|>
   
   [semi_ring_fupdcanon_comp]  Theorem
      
      ⊢ ((∀g f. SR1_fupd f ∘ SR0_fupd g = SR0_fupd g ∘ SR1_fupd f) ∧
         ∀h g f. SR1_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd g ∘ SR1_fupd f ∘ h) ∧
        ((∀g f. SRP_fupd f ∘ SR0_fupd g = SR0_fupd g ∘ SRP_fupd f) ∧
         ∀h g f. SRP_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd g ∘ SRP_fupd f ∘ h) ∧
        ((∀g f. SRP_fupd f ∘ SR1_fupd g = SR1_fupd g ∘ SRP_fupd f) ∧
         ∀h g f. SRP_fupd f ∘ SR1_fupd g ∘ h = SR1_fupd g ∘ SRP_fupd f ∘ h) ∧
        ((∀g f. SRM_fupd f ∘ SR0_fupd g = SR0_fupd g ∘ SRM_fupd f) ∧
         ∀h g f. SRM_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd g ∘ SRM_fupd f ∘ h) ∧
        ((∀g f. SRM_fupd f ∘ SR1_fupd g = SR1_fupd g ∘ SRM_fupd f) ∧
         ∀h g f. SRM_fupd f ∘ SR1_fupd g ∘ h = SR1_fupd g ∘ SRM_fupd f ∘ h) ∧
        (∀g f. SRM_fupd f ∘ SRP_fupd g = SRP_fupd g ∘ SRM_fupd f) ∧
        ∀h g f. SRM_fupd f ∘ SRP_fupd g ∘ h = SRP_fupd g ∘ SRM_fupd f ∘ h
   
   [semi_ring_fupdfupds]  Theorem
      
      ⊢ (∀s g f.
           s with <|SR0 updated_by f; SR0 updated_by g|> =
           s with SR0 updated_by f ∘ g) ∧
        (∀s g f.
           s with <|SR1 updated_by f; SR1 updated_by g|> =
           s with SR1 updated_by f ∘ g) ∧
        (∀s g f.
           s with <|SRP updated_by f; SRP updated_by g|> =
           s with SRP updated_by f ∘ g) ∧
        ∀s g f.
          s with <|SRM updated_by f; SRM updated_by g|> =
          s with SRM updated_by f ∘ g
   
   [semi_ring_fupdfupds_comp]  Theorem
      
      ⊢ ((∀g f. SR0_fupd f ∘ SR0_fupd g = SR0_fupd (f ∘ g)) ∧
         ∀h g f. SR0_fupd f ∘ SR0_fupd g ∘ h = SR0_fupd (f ∘ g) ∘ h) ∧
        ((∀g f. SR1_fupd f ∘ SR1_fupd g = SR1_fupd (f ∘ g)) ∧
         ∀h g f. SR1_fupd f ∘ SR1_fupd g ∘ h = SR1_fupd (f ∘ g) ∘ h) ∧
        ((∀g f. SRP_fupd f ∘ SRP_fupd g = SRP_fupd (f ∘ g)) ∧
         ∀h g f. SRP_fupd f ∘ SRP_fupd g ∘ h = SRP_fupd (f ∘ g) ∘ h) ∧
        (∀g f. SRM_fupd f ∘ SRM_fupd g = SRM_fupd (f ∘ g)) ∧
        ∀h g f. SRM_fupd f ∘ SRM_fupd g ∘ h = SRM_fupd (f ∘ g) ∘ h
   
   [semi_ring_induction]  Theorem
      
      ⊢ ∀P. (∀a a0 f f0. P (semi_ring a a0 f f0)) ⇒ ∀s. P s
   
   [semi_ring_literal_11]  Theorem
      
      ⊢ ∀a01 a1 f01 f1 a02 a2 f02 f2.
          (<|SR0 := a01; SR1 := a1; SRP := f01; SRM := f1|> =
           <|SR0 := a02; SR1 := a2; SRP := f02; SRM := f2|>) ⇔
          (a01 = a02) ∧ (a1 = a2) ∧ (f01 = f02) ∧ (f1 = f2)
   
   [semi_ring_literal_nchotomy]  Theorem
      
      ⊢ ∀s. ∃a0 a f0 f. s = <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
   
   [semi_ring_nchotomy]  Theorem
      
      ⊢ ∀ss. ∃a a0 f f0. ss = semi_ring a a0 f f0
   
   [semi_ring_updates_eq_literal]  Theorem
      
      ⊢ ∀s a0 a f0 f.
          s with <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|> =
          <|SR0 := a0; SR1 := a; SRP := f0; SRM := f|>
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Trindemossen-1