apropos_in : term -> data list -> data list
STRUCTURE
SYNOPSIS
Attempt to select matching theorems among a given list.
DESCRIPTION
An invocation DB.apropos_in M data_list selects all theorems, definitions, and axioms within data_list that have a subterm that matches M. If there are no matches, the empty list is returned.
FAILURE
Never fails.
EXAMPLE
- DB.apropos (Term `(!x y. P x y) ==> Q`);
<<HOL message: inventing new type variable names: 'a, 'b>>
> val it =
    [(("ind_type", "INJ_INVERSE2"),
      (|- !P.
            (!x1 y1 x2 y2. (P x1 y1 = P x2 y2) = (x1 = x2) /\ (y1 = y2)) ==>
            ?X Y. !x y. (X (P x y) = x) /\ (Y (P x y) = y), Thm)),
     (("pair", "pair_induction"),
      (|- (!p_1 p_2. P (p_1,p_2)) ==> !p. P p, Thm))] :
  ((string * string) * (thm * class)) list

- DB.apropos_in (Term `(x, y)`) it ;
    [(("pair", "pair_induction"),
      (|- (!p_1 p_2. P (p_1,p_2)) ==> !p. P p, Thm))] :
  ((string * string) * (thm * class)) list

COMMENTS
The notion of matching is a restricted version of higher-order matching. It uses DB.matches.
USES
Finding theorems in interactive proof sessions. The second argument will normally be the result of a previous call to DB.find, DB.match, DB.apropos, DB.listDB, DB.thy etc.
SEEALSO
HOL  Trindemossen-1