Structure veblenTheory
signature veblenTheory =
sig
type thm = Thm.thm
(* Definitions *)
val closed_def : thm
val club_def : thm
val continuous_def : thm
val strict_mono_def : thm
val unbounded_def : thm
(* Theorems *)
val better_induction : thm
val club_INTER : thm
val clubs_exist : thm
val increasing : thm
val mono_natI : thm
val nrange_IN_Uinf : thm
val oleast_leq : thm
val sup_mem_INTER : thm
val veblen_grammars : type_grammar.grammar * term_grammar.grammar
(*
[ordinal] Parent theory of "veblen"
[closed_def] Definition
⊢ ∀A. closed A ⇔ ∀g. (∀n. g n ∈ A) ⇒ sup {g n | n | T} ∈ A
[club_def] Definition
⊢ ∀A. club A ⇔ closed A ∧ unbounded A
[continuous_def] Definition
⊢ ∀f. continuous f ⇔
∀A. A ≼ 𝕌(:num + α) ⇒ f (sup A) = sup (IMAGE f A)
[strict_mono_def] Definition
⊢ ∀f. strict_mono f ⇔ ∀x y. x < y ⇒ f x < f y
[unbounded_def] Definition
⊢ ∀A. unbounded A ⇔ ∀a. ∃b. b ∈ A ∧ a < b
[better_induction] Theorem
⊢ ∀P. P 0 ∧ (∀a. P a ⇒ P a⁺) ∧
(∀a. 0 < a ∧ (∀b. b < a ⇒ P b) ⇒ P (sup (preds a))) ⇒
∀a. P a
[club_INTER] Theorem
⊢ (∀n. club (A n)) ∧ (∀n. A (SUC n) ⊆ A n) ⇒
club (BIGINTER {A n | n | T})
[clubs_exist] Theorem
⊢ strict_mono f ∧ continuous f ⇒ club (IMAGE f 𝕌(:α ordinal))
[increasing] Theorem
⊢ ∀f x. strict_mono f ∧ continuous f ⇒ x ≤ f x
[mono_natI] Theorem
⊢ (∀n. f n ≤ f (SUC n)) ⇒ ∀m n. m ≤ n ⇒ f m ≤ f n
[nrange_IN_Uinf] Theorem
⊢ {f n | n | T} ≼ 𝕌(:num + α)
[oleast_leq] Theorem
⊢ ∀P a. P a ⇒ $oleast P ≤ a
[sup_mem_INTER] Theorem
⊢ (∀n. club (A n)) ∧ (∀n. A (SUC n) ⊆ A n) ∧ (∀n. f n ∈ A n) ∧
(∀m n. m ≤ n ⇒ f m ≤ f n) ⇒
sup {f n | n | T} ∈ BIGINTER {A n | n | T}
*)
end
HOL 4, Kananaskis-14