Structure transferTheory
signature transferTheory =
sig
type thm = Thm.thm
(* Definitions *)
val FUN_REL_def : thm
val PAIR_REL_def : thm
val bi_unique_def : thm
val bitotal_def : thm
val equalityp_def : thm
val left_unique_def : thm
val right_unique_def : thm
val surj_def : thm
val total_def : thm
(* Theorems *)
val ALL_IFF : thm
val ALL_surj_RDOM : thm
val ALL_surj_iff_imp : thm
val ALL_surj_imp_imp : thm
val ALL_total_RRANGE : thm
val ALL_total_cimp_cimp : thm
val ALL_total_iff_cimp : thm
val COMMA_CORRECT : thm
val EQ_bi_unique : thm
val EXISTS_IFF_RDOM : thm
val EXISTS_IFF_RRANGE : thm
val EXISTS_bitotal : thm
val EXISTS_surj_cimp_cimp : thm
val EXISTS_surj_iff_cimp : thm
val EXISTS_total_iff_imp : thm
val EXISTS_total_imp_imp : thm
val FST_CORRECT : thm
val FUN_REL_COMB : thm
val FUN_REL_EQ2 : thm
val FUN_REL_IFF_IMP : thm
val LIST_REL_right_unique : thm
val LIST_REL_surj : thm
val LIST_REL_total : thm
val PAIRU_COMMA : thm
val PAIRU_def : thm
val PAIRU_ind : thm
val RDOM_EQ : thm
val RRANGE_EQ : thm
val SND_CORRECT : thm
val UPAIR_COMMA : thm
val UPAIR_def : thm
val UPAIR_ind : thm
val UREL_EQ : thm
val bi_unique_EQ : thm
val bi_unique_implied : thm
val bitotal_EQ : thm
val bitotal_implied : thm
val cimp_disj : thm
val cimp_imp : thm
val eq_equalityp : thm
val eq_imp : thm
val equalityp_FUN_REL : thm
val equalityp_LIST_REL : thm
val equalityp_PAIR_REL : thm
val equalityp_applied : thm
val imp_conj : thm
val imp_disj : thm
val left_unique_EQ : thm
val right_unique_EQ : thm
val surj_EQ : thm
val surj_sets : thm
val total_EQ : thm
val total_total_sets : thm
val transfer_grammars : type_grammar.grammar * term_grammar.grammar
(*
[indexedLists] Parent theory of "transfer"
[patternMatches] Parent theory of "transfer"
[FUN_REL_def] Definition
⊢ ∀AB CD f g. (AB |==> CD) f g ⇔ ∀a b. AB a b ⇒ CD (f a) (g b)
[PAIR_REL_def] Definition
⊢ ∀AB CD a c b d. (AB ### CD) (a,c) (b,d) ⇔ AB a b ∧ CD c d
[bi_unique_def] Definition
⊢ ∀R. bi_unique R ⇔ left_unique R ∧ right_unique R
[bitotal_def] Definition
⊢ ∀R. bitotal R ⇔ total R ∧ surj R
[equalityp_def] Definition
⊢ ∀A. equalityp A ⇔ A = $=
[left_unique_def] Definition
⊢ ∀R. left_unique R ⇔ ∀a1 a2 b. R a1 b ∧ R a2 b ⇒ a1 = a2
[right_unique_def] Definition
⊢ ∀R. right_unique R ⇔ ∀a b1 b2. R a b1 ∧ R a b2 ⇒ b1 = b2
[surj_def] Definition
⊢ ∀R. surj R ⇔ ∀y. ∃x. R x y
[total_def] Definition
⊢ ∀R. total R ⇔ ∀x. ∃y. R x y
[ALL_IFF] Theorem
⊢ bitotal AB ⇒ ((AB |==> $<=>) |==> $<=>) $! $!
[ALL_surj_RDOM] Theorem
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $<=>) (RES_FORALL (RDOM AB)) $!
[ALL_surj_iff_imp] Theorem
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $==>) $! $!
[ALL_surj_imp_imp] Theorem
⊢ surj AB ⇒ ((AB |==> $==>) |==> $==>) $! $!
[ALL_total_RRANGE] Theorem
⊢ total AB ⇒ ((AB |==> $<=>) |==> $<=>) $! (RES_FORALL (RRANGE AB))
[ALL_total_cimp_cimp] Theorem
⊢ total AB ⇒ ((AB |==> flip $==>) |==> flip $==>) $! $!
[ALL_total_iff_cimp] Theorem
⊢ total AB ⇒ ((AB |==> $<=>) |==> flip $==>) $! $!
[COMMA_CORRECT] Theorem
⊢ (AB |==> CD |==> AB ### CD) $, $,
[EQ_bi_unique] Theorem
⊢ bi_unique AB ⇒ (AB |==> AB |==> $<=>) $= $=
[EXISTS_IFF_RDOM] Theorem
⊢ surj AB ⇒ ((AB |==> $<=>) |==> $<=>) (RES_EXISTS (RDOM AB)) $?
[EXISTS_IFF_RRANGE] Theorem
⊢ total AB ⇒ ((AB |==> $<=>) |==> $<=>) $? (RES_EXISTS (RRANGE AB))
[EXISTS_bitotal] Theorem
⊢ bitotal AB ⇒ ((AB |==> $<=>) |==> $<=>) $? $?
[EXISTS_surj_cimp_cimp] Theorem
⊢ surj AB ⇒ ((AB |==> flip $==>) |==> flip $==>) $? $?
[EXISTS_surj_iff_cimp] Theorem
⊢ surj AB ⇒ ((AB |==> $<=>) |==> flip $==>) $? $?
[EXISTS_total_iff_imp] Theorem
⊢ total AB ⇒ ((AB |==> $<=>) |==> $==>) $? $?
[EXISTS_total_imp_imp] Theorem
⊢ total AB ⇒ ((AB |==> $==>) |==> $==>) $? $?
[FST_CORRECT] Theorem
⊢ (AB ### CD |==> AB) FST FST
[FUN_REL_COMB] Theorem
⊢ (AB |==> CD) f g ∧ AB a b ⇒ CD (f a) (g b)
[FUN_REL_EQ2] Theorem
⊢ $= |==> $= = $=
[FUN_REL_IFF_IMP] Theorem
⊢ (AB |==> $<=>) P Q ⇒ (AB |==> $==>) P Q ∧ (AB |==> flip $==>) P Q
[LIST_REL_right_unique] Theorem
⊢ right_unique AB ⇒ right_unique (LIST_REL AB)
[LIST_REL_surj] Theorem
⊢ surj AB ⇒ surj (LIST_REL AB)
[LIST_REL_total] Theorem
⊢ total AB ⇒ total (LIST_REL AB)
[PAIRU_COMMA] Theorem
⊢ (AB |==> $= |==> PAIRU AB) $, K
[PAIRU_def] Theorem
⊢ PAIRU AB (a,()) b = AB a b
[PAIRU_ind] Theorem
⊢ ∀P. (∀AB a b. P AB (a,()) b) ⇒ ∀v v1 v2 v3. P v (v1,v2) v3
[RDOM_EQ] Theorem
⊢ RDOM $= = K T
[RRANGE_EQ] Theorem
⊢ RRANGE $= = K T
[SND_CORRECT] Theorem
⊢ (AB ### CD |==> CD) SND SND
[UPAIR_COMMA] Theorem
⊢ ($= |==> AB |==> UPAIR AB) $, (K I)
[UPAIR_def] Theorem
⊢ UPAIR AB ((),a) b = AB a b
[UPAIR_ind] Theorem
⊢ ∀P. (∀AB a b. P AB ((),a) b) ⇒ ∀v v1 v2 v3. P v (v1,v2) v3
[UREL_EQ] Theorem
⊢ () = ()
[bi_unique_EQ] Theorem
⊢ bi_unique $=
[bi_unique_implied] Theorem
⊢ left_unique r ∧ right_unique r ⇒ bi_unique r
[bitotal_EQ] Theorem
⊢ bitotal $=
[bitotal_implied] Theorem
⊢ total r ∧ surj r ⇒ bitotal r
[cimp_disj] Theorem
⊢ (flip $==> |==> flip $==> |==> flip $==>) $\/ $\/
[cimp_imp] Theorem
⊢ ($==> |==> flip $==> |==> flip $==>) $==> $==>
[eq_equalityp] Theorem
⊢ equalityp $=
[eq_imp] Theorem
⊢ ($<=> |==> $<=> |==> $<=>) $==> $==>
[equalityp_FUN_REL] Theorem
⊢ equalityp AB ∧ equalityp CD ⇒ equalityp (AB |==> CD)
[equalityp_LIST_REL] Theorem
⊢ equalityp AB ⇒ equalityp (LIST_REL AB)
[equalityp_PAIR_REL] Theorem
⊢ equalityp AB ∧ equalityp CD ⇒ equalityp (AB ### CD)
[equalityp_applied] Theorem
⊢ equalityp A ⇒ A x x
[imp_conj] Theorem
⊢ ($==> |==> $==> |==> $==>) $/\ $/\
[imp_disj] Theorem
⊢ ($==> |==> $==> |==> $==>) $\/ $\/
[left_unique_EQ] Theorem
⊢ left_unique $=
[right_unique_EQ] Theorem
⊢ right_unique $=
[surj_EQ] Theorem
⊢ surj $=
[surj_sets] Theorem
⊢ surj AB ∧ right_unique AB ⇒ surj (AB |==> $<=>)
[total_EQ] Theorem
⊢ total $=
[total_total_sets] Theorem
⊢ total AB ∧ left_unique AB ⇒ total (AB |==> $<=>)
*)
end
HOL 4, Kananaskis-14