Structure topologyTheory
signature topologyTheory =
sig
type thm = Thm.thm
(* Definitions *)
val closed_DEF : thm
val closed_in : thm
val hull : thm
val istopology : thm
val limpt : thm
val neigh : thm
val open_DEF : thm
val subtopology : thm
val topology_TY_DEF : thm
val topology_tybij : thm
val topspace : thm
(* Theorems *)
val BIGINTER_2 : thm
val BIGUNION_2 : thm
val CLOSED_IN_BIGINTER : thm
val CLOSED_IN_BIGUNION : thm
val CLOSED_IN_DIFF : thm
val CLOSED_IN_EMPTY : thm
val CLOSED_IN_IMP_SUBSET : thm
val CLOSED_IN_INTER : thm
val CLOSED_IN_OPEN_IN_COMPL : thm
val CLOSED_IN_SUBSET : thm
val CLOSED_IN_SUBTOPOLOGY : thm
val CLOSED_IN_SUBTOPOLOGY_EMPTY : thm
val CLOSED_IN_SUBTOPOLOGY_REFL : thm
val CLOSED_IN_SUBTOPOLOGY_UNION : thm
val CLOSED_IN_TOPSPACE : thm
val CLOSED_IN_UNION : thm
val CLOSED_LIMPT : thm
val HULLS_EQ : thm
val HULL_ANTIMONO : thm
val HULL_EQ : thm
val HULL_HULL : thm
val HULL_IMAGE : thm
val HULL_IMAGE_GALOIS : thm
val HULL_IMAGE_SUBSET : thm
val HULL_INC : thm
val HULL_INDUCT : thm
val HULL_MINIMAL : thm
val HULL_MONO : thm
val HULL_P : thm
val HULL_P_AND_Q : thm
val HULL_REDUNDANT : thm
val HULL_REDUNDANT_EQ : thm
val HULL_SUBSET : thm
val HULL_UNION : thm
val HULL_UNION_LEFT : thm
val HULL_UNION_RIGHT : thm
val HULL_UNION_SUBSET : thm
val HULL_UNIQUE : thm
val ISTOPOLOGY_OPEN_IN : thm
val ISTOPOLOGY_SUBTOPOLOGY : thm
val IS_HULL : thm
val OPEN_IN_BIGINTER : thm
val OPEN_IN_BIGUNION : thm
val OPEN_IN_CLAUSES : thm
val OPEN_IN_CLOSED_IN : thm
val OPEN_IN_CLOSED_IN_EQ : thm
val OPEN_IN_DIFF : thm
val OPEN_IN_EMPTY : thm
val OPEN_IN_IMP_SUBSET : thm
val OPEN_IN_INTER : thm
val OPEN_IN_SUBOPEN : thm
val OPEN_IN_SUBSET : thm
val OPEN_IN_SUBTOPOLOGY : thm
val OPEN_IN_SUBTOPOLOGY_EMPTY : thm
val OPEN_IN_SUBTOPOLOGY_REFL : thm
val OPEN_IN_SUBTOPOLOGY_UNION : thm
val OPEN_IN_TOPSPACE : thm
val OPEN_IN_UNION : thm
val OPEN_NEIGH : thm
val OPEN_OWN_NEIGH : thm
val OPEN_SUBOPEN : thm
val OPEN_UNOPEN : thm
val P_HULL : thm
val SUBSET_HULL : thm
val SUBTOPOLOGY_SUPERSET : thm
val SUBTOPOLOGY_TOPSPACE : thm
val SUBTOPOLOGY_UNIV : thm
val TOPOLOGY_EQ : thm
val TOPSPACE_SUBTOPOLOGY : thm
val closed_topspace : thm
val open_topspace : thm
val topology_grammars : type_grammar.grammar * term_grammar.grammar
(*
[quotient] Parent theory of "topology"
[closed_DEF] Definition
β’ βs. closed s β closed_in s π(:Ξ±)
[closed_in] Definition
β’ βtop s.
closed_in top s β
s β topspace top β§ open_in top (topspace top DIFF s)
[hull] Definition
β’ βP s. P hull s = BIGINTER {t | P t β§ s β t}
[istopology] Definition
β’ βL. istopology L β
β
β L β§ (βs t. s β L β§ t β L β s β© t β L) β§
βk. k β L β BIGUNION k β L
[limpt] Definition
β’ βtop x S'.
limpt top x S' β βN. neigh top (N,x) β βy. x β y β§ S' y β§ N y
[neigh] Definition
β’ βtop N x. neigh top (N,x) β βP. open_in top P β§ P β N β§ P x
[open_DEF] Definition
β’ βs. open s β open_in s π(:Ξ±)
[subtopology] Definition
β’ βtop u. subtopology top u = topology {s β© u | open_in top s}
[topology_TY_DEF] Definition
β’ βrep. TYPE_DEFINITION istopology rep
[topology_tybij] Definition
β’ (βa. topology (open_in a) = a) β§
βr. istopology r β open_in (topology r) = r
[topspace] Definition
β’ βtop. topspace top = BIGUNION {s | open_in top s}
[BIGINTER_2] Theorem
β’ βs t. BIGINTER {s; t} = s β© t
[BIGUNION_2] Theorem
β’ βs t. BIGUNION {s; t} = s βͺ t
[CLOSED_IN_BIGINTER] Theorem
β’ βtop k.
k β β
β§ (βs. s β k β closed_in top s) β
closed_in top (BIGINTER k)
[CLOSED_IN_BIGUNION] Theorem
β’ βtop s.
FINITE s β§ (βt. t β s β closed_in top t) β
closed_in top (BIGUNION s)
[CLOSED_IN_DIFF] Theorem
β’ βtop s t.
closed_in top s β§ open_in top t β closed_in top (s DIFF t)
[CLOSED_IN_EMPTY] Theorem
β’ βtop. closed_in top β
[CLOSED_IN_IMP_SUBSET] Theorem
β’ βtop s t. closed_in (subtopology top s) t β t β s
[CLOSED_IN_INTER] Theorem
β’ βtop s t. closed_in top s β§ closed_in top t β closed_in top (s β© t)
[CLOSED_IN_OPEN_IN_COMPL] Theorem
β’ βtop. closed top β βs. closed_in top s β open_in top (COMPL s)
[CLOSED_IN_SUBSET] Theorem
β’ βtop s. closed_in top s β s β topspace top
[CLOSED_IN_SUBTOPOLOGY] Theorem
β’ βtop u s.
closed_in (subtopology top u) s β βt. closed_in top t β§ s = t β© u
[CLOSED_IN_SUBTOPOLOGY_EMPTY] Theorem
β’ βtop s. closed_in (subtopology top β
) s β s = β
[CLOSED_IN_SUBTOPOLOGY_REFL] Theorem
β’ βtop u. closed_in (subtopology top u) u β u β topspace top
[CLOSED_IN_SUBTOPOLOGY_UNION] Theorem
β’ βtop s t u.
closed_in (subtopology top t) s β§ closed_in (subtopology top u) s β
closed_in (subtopology top (t βͺ u)) s
[CLOSED_IN_TOPSPACE] Theorem
β’ βtop. closed_in top (topspace top)
[CLOSED_IN_UNION] Theorem
β’ βtop s t. closed_in top s β§ closed_in top t β closed_in top (s βͺ t)
[CLOSED_LIMPT] Theorem
β’ βtop.
closed top β βS'. closed_in top S' β βx. limpt top x S' β S' x
[HULLS_EQ] Theorem
β’ βP s t.
(βf. (βs. s β f β P s) β P (BIGINTER f)) β§ s β P hull t β§
t β P hull s β
P hull s = P hull t
[HULL_ANTIMONO] Theorem
β’ βP Q s. P β Q β Q hull s β P hull s
[HULL_EQ] Theorem
β’ βP s.
(βf. (βs. s β f β P s) β P (BIGINTER f)) β (P hull s = s β P s)
[HULL_HULL] Theorem
β’ βP s. P hull (P hull s) = P hull s
[HULL_IMAGE] Theorem
β’ βP f s.
(βs. P (P hull s)) β§ (βs. P (IMAGE f s) β P s) β§
(βx y. f x = f y β x = y) β§ (βy. βx. f x = y) β
P hull IMAGE f s = IMAGE f (P hull s)
[HULL_IMAGE_GALOIS] Theorem
β’ βP f g s.
(βs. P (P hull s)) β§ (βs. P s β P (IMAGE f s)) β§
(βs. P s β P (IMAGE g s)) β§ (βs t. s β IMAGE g t β IMAGE f s β t) β
P hull IMAGE f s = IMAGE f (P hull s)
[HULL_IMAGE_SUBSET] Theorem
β’ βP f s.
P (P hull s) β§ (βs. P s β P (IMAGE f s)) β
P hull IMAGE f s β IMAGE f (P hull s)
[HULL_INC] Theorem
β’ βP s x. x β s β x β P hull s
[HULL_INDUCT] Theorem
β’ βP p s. (βx. x β s β p x) β§ P {x | p x} β βx. x β P hull s β p x
[HULL_MINIMAL] Theorem
β’ βP s t. s β t β§ P t β P hull s β t
[HULL_MONO] Theorem
β’ βP s t. s β t β P hull s β P hull t
[HULL_P] Theorem
β’ βP s. P s β P hull s = s
[HULL_P_AND_Q] Theorem
β’ βP Q.
(βf. (βs. s β f β P s) β P (BIGINTER f)) β§
(βf. (βs. s β f β Q s) β Q (BIGINTER f)) β§
(βs. Q s β Q (P hull s)) β
(Ξ»x. P x β§ Q x) hull s = P hull (Q hull s)
[HULL_REDUNDANT] Theorem
β’ βP a s. a β P hull s β P hull (a INSERT s) = P hull s
[HULL_REDUNDANT_EQ] Theorem
β’ βP a s. a β P hull s β P hull (a INSERT s) = P hull s
[HULL_SUBSET] Theorem
β’ βP s. s β P hull s
[HULL_UNION] Theorem
β’ βP s t. P hull s βͺ t = P hull (P hull s) βͺ (P hull t)
[HULL_UNION_LEFT] Theorem
β’ βP s t. P hull s βͺ t = P hull (P hull s) βͺ t
[HULL_UNION_RIGHT] Theorem
β’ βP s t. P hull s βͺ t = P hull s βͺ (P hull t)
[HULL_UNION_SUBSET] Theorem
β’ βP s t. (P hull s) βͺ (P hull t) β P hull s βͺ t
[HULL_UNIQUE] Theorem
β’ βP s t. s β t β§ P t β§ (βt'. s β t' β§ P t' β t β t') β P hull s = t
[ISTOPOLOGY_OPEN_IN] Theorem
β’ βtop. istopology (open_in top)
[ISTOPOLOGY_SUBTOPOLOGY] Theorem
β’ βtop u. istopology {s β© u | open_in top s}
[IS_HULL] Theorem
β’ βP s.
(βf. (βs. s β f β P s) β P (BIGINTER f)) β
(P s β βt. s = P hull t)
[OPEN_IN_BIGINTER] Theorem
β’ βtop s.
FINITE s β§ s β β
β§ (βt. t β s β open_in top t) β
open_in top (BIGINTER s)
[OPEN_IN_BIGUNION] Theorem
β’ βtop k. (βs. s β k β open_in top s) β open_in top (BIGUNION k)
[OPEN_IN_CLAUSES] Theorem
β’ βtop.
open_in top β
β§
(βs t. open_in top s β§ open_in top t β open_in top (s β© t)) β§
βk. (βs. s β k β open_in top s) β open_in top (BIGUNION k)
[OPEN_IN_CLOSED_IN] Theorem
β’ βtop s.
s β topspace top β
(open_in top s β closed_in top (topspace top DIFF s))
[OPEN_IN_CLOSED_IN_EQ] Theorem
β’ βtop s.
open_in top s β
s β topspace top β§ closed_in top (topspace top DIFF s)
[OPEN_IN_DIFF] Theorem
β’ βtop s t. open_in top s β§ closed_in top t β open_in top (s DIFF t)
[OPEN_IN_EMPTY] Theorem
β’ βtop. open_in top β
[OPEN_IN_IMP_SUBSET] Theorem
β’ βtop s t. open_in (subtopology top s) t β t β s
[OPEN_IN_INTER] Theorem
β’ βtop s t. open_in top s β§ open_in top t β open_in top (s β© t)
[OPEN_IN_SUBOPEN] Theorem
β’ βtop s.
open_in top s β βx. x β s β βt. open_in top t β§ x β t β§ t β s
[OPEN_IN_SUBSET] Theorem
β’ βtop s. open_in top s β s β topspace top
[OPEN_IN_SUBTOPOLOGY] Theorem
β’ βtop u s.
open_in (subtopology top u) s β βt. open_in top t β§ s = t β© u
[OPEN_IN_SUBTOPOLOGY_EMPTY] Theorem
β’ βtop s. open_in (subtopology top β
) s β s = β
[OPEN_IN_SUBTOPOLOGY_REFL] Theorem
β’ βtop u. open_in (subtopology top u) u β u β topspace top
[OPEN_IN_SUBTOPOLOGY_UNION] Theorem
β’ βtop s t u.
open_in (subtopology top t) s β§ open_in (subtopology top u) s β
open_in (subtopology top (t βͺ u)) s
[OPEN_IN_TOPSPACE] Theorem
β’ βtop. open_in top (topspace top)
[OPEN_IN_UNION] Theorem
β’ βtop s t. open_in top s β§ open_in top t β open_in top (s βͺ t)
[OPEN_NEIGH] Theorem
β’ βS' top. open_in top S' β βx. S' x β βN. neigh top (N,x) β§ N β S'
[OPEN_OWN_NEIGH] Theorem
β’ βS' top x. open_in top S' β§ S' x β neigh top (S',x)
[OPEN_SUBOPEN] Theorem
β’ βS' top.
open_in top S' β βx. S' x β βP. P x β§ open_in top P β§ P β S'
[OPEN_UNOPEN] Theorem
β’ βS' top.
open_in top S' β BIGUNION {P | open_in top P β§ P β S'} = S'
[P_HULL] Theorem
β’ βP s. (βf. (βs. s β f β P s) β P (BIGINTER f)) β P (P hull s)
[SUBSET_HULL] Theorem
β’ βP s t. P t β (P hull s β t β s β t)
[SUBTOPOLOGY_SUPERSET] Theorem
β’ βtop s. topspace top β s β subtopology top s = top
[SUBTOPOLOGY_TOPSPACE] Theorem
β’ βtop. subtopology top (topspace top) = top
[SUBTOPOLOGY_UNIV] Theorem
β’ βtop. subtopology top π(:Ξ±) = top
[TOPOLOGY_EQ] Theorem
β’ βtop1 top2. top1 = top2 β βs. open_in top1 s β open_in top2 s
[TOPSPACE_SUBTOPOLOGY] Theorem
β’ βtop u. topspace (subtopology top u) = topspace top β© u
[closed_topspace] Theorem
β’ βtop. closed top β topspace top = π(:Ξ±)
[open_topspace] Theorem
β’ βtop. open top β topspace top = π(:Ξ±)
*)
end
HOL 4, Kananaskis-14