Structure tcTheory
signature tcTheory =
sig
type thm = Thm.thm
(* Definitions *)
val BRESTR : thm
val DRESTR : thm
val FMAP_TO_RELN : thm
val RELN_TO_FMAP : thm
val RRESTR : thm
val TC_ITER : thm
val TC_MOD : thm
val subTC : thm
(* Theorems *)
val DRESTR_EMPTY : thm
val DRESTR_IN : thm
val DRESTR_RDOM : thm
val FDOM_RDOM : thm
val FINITE_RDOM : thm
val I_o_f : thm
val NOT_IN_RDOM : thm
val O_REMPTY_O : thm
val RDOM_SUBSET_FDOM : thm
val RDOM_subTC : thm
val RELN_TO_FMAP_TO_RELN_ID : thm
val REMPTY_RRESTR : thm
val RTC_INSERT : thm
val SUBSET_FDOM_LEM : thm
val TC_ITER_THM : thm
val TC_MOD_EMPTY_ID : thm
val TC_MOD_LEM : thm
val subTC_EMPTY : thm
val subTC_FDOM : thm
val subTC_FDOM_RDOM : thm
val subTC_INSERT : thm
val subTC_INSERT_COR : thm
val subTC_MAX_RDOM : thm
val subTC_RDOM : thm
val subTC_SUPERSET_RDOM : thm
val subTC_thm : thm
val tc_grammars : type_grammar.grammar * term_grammar.grammar
(*
[finite_map] Parent theory of "tc"
[toto] Parent theory of "tc"
[BRESTR] Definition
|- !R s. R ^|^ s = R ^| s |^ s
[DRESTR] Definition
|- !R s a b. (R ^| s) a b <=> a IN s /\ R a b
[FMAP_TO_RELN] Definition
|- !f x. FMAP_TO_RELN f x = if x IN FDOM f then f ' x else {}
[RELN_TO_FMAP] Definition
|- !R. RELN_TO_FMAP R = FUN_FMAP R (RDOM R)
[RRESTR] Definition
|- !R s a b. (R |^ s) a b <=> b IN s /\ R a b
[TC_ITER] Definition
|- (!r. TC_ITER [] r = r) /\
!x d r. TC_ITER (x::d) r = TC_ITER d (TC_MOD x (r ' x) o_f r)
[TC_MOD] Definition
|- !x rx ra. TC_MOD x rx ra = if x IN ra then ra UNION rx else ra
[subTC] Definition
|- !R s x y.
subTC R s x y <=>
R x y \/
?a b. (R ^|^ s)^* a b /\ a IN s /\ b IN s /\ R x a /\ R b y
[DRESTR_EMPTY] Theorem
|- !R. R ^| {} = REMPTY
[DRESTR_IN] Theorem
|- !R s a. (R ^| s) a = if a IN s then R a else {}
[DRESTR_RDOM] Theorem
|- !R. R ^| RDOM R = R
[FDOM_RDOM] Theorem
|- !R. FINITE (RDOM R) ==> (FDOM (RELN_TO_FMAP R) = RDOM R)
[FINITE_RDOM] Theorem
|- !f. FINITE (RDOM (FMAP_TO_RELN f))
[I_o_f] Theorem
|- !f. I o_f f = f
[NOT_IN_RDOM] Theorem
|- !Q x. (Q x = {}) <=> x NOTIN RDOM Q
[O_REMPTY_O] Theorem
|- (!R. R O REMPTY = REMPTY) /\ !R. REMPTY O R = REMPTY
[RDOM_SUBSET_FDOM] Theorem
|- !f. RDOM (FMAP_TO_RELN f) SUBSET FDOM f
[RDOM_subTC] Theorem
|- !R s. RDOM (subTC R s) = RDOM R
[RELN_TO_FMAP_TO_RELN_ID] Theorem
|- !R. FINITE (RDOM R) ==> (FMAP_TO_RELN (RELN_TO_FMAP R) = R)
[REMPTY_RRESTR] Theorem
|- !s. REMPTY |^ s = REMPTY
[RTC_INSERT] Theorem
|- !R s a w z.
(R ^|^ (a INSERT s))^* w z <=>
(R ^|^ s)^* w z \/
((a = w) \/ ?x. x IN s /\ (R ^|^ s)^* w x /\ R x a) /\
((a = z) \/ ?y. y IN s /\ R a y /\ (R ^|^ s)^* y z)
[SUBSET_FDOM_LEM] Theorem
|- !R s f. (subTC R s = FMAP_TO_RELN f) ==> RDOM R SUBSET FDOM f
[TC_ITER_THM] Theorem
|- !R d f s.
(s UNION set d = FDOM f) /\ (subTC R s = FMAP_TO_RELN f) ==>
(R^+ = FMAP_TO_RELN (TC_ITER d f))
[TC_MOD_EMPTY_ID] Theorem
|- !x ra. TC_MOD x {} = I
[TC_MOD_LEM] Theorem
|- !R s x f.
x IN FDOM f /\ (subTC R s = FMAP_TO_RELN f) ==>
(subTC R (x INSERT s) = FMAP_TO_RELN (TC_MOD x (f ' x) o_f f))
[subTC_EMPTY] Theorem
|- !R. subTC R {} = R
[subTC_FDOM] Theorem
|- !g R.
(subTC R (RDOM R) = FMAP_TO_RELN g) ==>
(subTC R (FDOM g) = subTC R (RDOM R))
[subTC_FDOM_RDOM] Theorem
|- !R f.
(subTC R (FDOM f) = FMAP_TO_RELN f) ==>
(subTC R (RDOM R) = FMAP_TO_RELN f)
[subTC_INSERT] Theorem
|- !R s q x y.
subTC R (q INSERT s) x y <=>
subTC R s x y \/ subTC R s x q /\ subTC R s q y
[subTC_INSERT_COR] Theorem
|- !R s x a.
subTC R (x INSERT s) a =
if x IN subTC R s a then subTC R s a UNION subTC R s x
else subTC R s a
[subTC_MAX_RDOM] Theorem
|- !R s x. x NOTIN RDOM R ==> (subTC R (x INSERT s) = subTC R s)
[subTC_RDOM] Theorem
|- !R. subTC R (RDOM R) = R^+
[subTC_SUPERSET_RDOM] Theorem
|- !R s. FINITE s ==> (subTC R (RDOM R UNION s) = subTC R (RDOM R))
[subTC_thm] Theorem
|- !R s. subTC R s = R RUNION R O ((R ^|^ s)^* ^| s) O R
*)
end
HOL 4, Kananaskis-14