Structure sumTheory
signature sumTheory =
sig
type thm = Thm.thm
(* Definitions *)
val INL_DEF : thm
val INR_DEF : thm
val ISL : thm
val ISR : thm
val IS_SUM_REP : thm
val OUTL : thm
val OUTR : thm
val SUM_ALL_def : thm
val SUM_MAP_def : thm
val sum_ISO_DEF : thm
val sum_TY_DEF : thm
val sum_case_def : thm
(* Theorems *)
val EXISTS_SUM : thm
val FORALL_SUM : thm
val INL : thm
val INL_11 : thm
val INR : thm
val INR_11 : thm
val INR_INL_11 : thm
val INR_neq_INL : thm
val ISL_OR_ISR : thm
val NOT_ISL_ISR : thm
val NOT_ISR_ISL : thm
val SUM_ALL_CONG : thm
val SUM_ALL_MONO : thm
val SUM_MAP : thm
val SUM_MAP_CASE : thm
val SUM_MAP_I : thm
val SUM_MAP_o : thm
val cond_sum_expand : thm
val datatype_sum : thm
val sum_Axiom : thm
val sum_CASES : thm
val sum_INDUCT : thm
val sum_axiom : thm
val sum_case_cong : thm
val sum_distinct : thm
val sum_distinct1 : thm
val sum_grammars : type_grammar.grammar * term_grammar.grammar
(*
[pair] Parent theory of "sum"
[INL_DEF] Definition
⊢ ∀e. INL e = ABS_sum (λb x y. x = e ∧ b)
[INR_DEF] Definition
⊢ ∀e. INR e = ABS_sum (λb x y. y = e ∧ ¬b)
[ISL] Definition
⊢ (∀x. ISL (INL x)) ∧ ∀y. ¬ISL (INR y)
[ISR] Definition
⊢ (∀x. ISR (INR x)) ∧ ∀y. ¬ISR (INL y)
[IS_SUM_REP] Definition
⊢ ∀f. IS_SUM_REP f ⇔
∃v1 v2. f = (λb x y. x = v1 ∧ b) ∨ f = (λb x y. y = v2 ∧ ¬b)
[OUTL] Definition
⊢ ∀x. OUTL (INL x) = x
[OUTR] Definition
⊢ ∀x. OUTR (INR x) = x
[SUM_ALL_def] Definition
⊢ (∀P Q x. SUM_ALL P Q (INL x) ⇔ P x) ∧
∀P Q y. SUM_ALL P Q (INR y) ⇔ Q y
[SUM_MAP_def] Definition
⊢ (∀f g a. SUM_MAP f g (INL a) = INL (f a)) ∧
∀f g b. SUM_MAP f g (INR b) = INR (g b)
[sum_ISO_DEF] Definition
⊢ (∀a. ABS_sum (REP_sum a) = a) ∧
∀r. IS_SUM_REP r ⇔ REP_sum (ABS_sum r) = r
[sum_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION IS_SUM_REP rep
[sum_case_def] Definition
⊢ (∀x f f1. sum_CASE (INL x) f f1 = f x) ∧
∀y f f1. sum_CASE (INR y) f f1 = f1 y
[EXISTS_SUM] Theorem
⊢ ∀P. (∃s. P s) ⇔ (∃x. P (INL x)) ∨ ∃y. P (INR y)
[FORALL_SUM] Theorem
⊢ (∀s. P s) ⇔ (∀x. P (INL x)) ∧ ∀y. P (INR y)
[INL] Theorem
⊢ ∀x. ISL x ⇒ INL (OUTL x) = x
[INL_11] Theorem
⊢ INL x = INL y ⇔ x = y
[INR] Theorem
⊢ ∀x. ISR x ⇒ INR (OUTR x) = x
[INR_11] Theorem
⊢ INR x = INR y ⇔ x = y
[INR_INL_11] Theorem
⊢ (∀y x. INL x = INL y ⇔ x = y) ∧ ∀y x. INR x = INR y ⇔ x = y
[INR_neq_INL] Theorem
⊢ ∀v1 v2. INR v2 ≠ INL v1
[ISL_OR_ISR] Theorem
⊢ ∀x. ISL x ∨ ISR x
[NOT_ISL_ISR] Theorem
⊢ ∀x. ¬ISL x ⇔ ISR x
[NOT_ISR_ISL] Theorem
⊢ ∀x. ¬ISR x ⇔ ISL x
[SUM_ALL_CONG] Theorem
⊢ ∀s s' P P' Q Q'.
s = s' ∧ (∀a. s' = INL a ⇒ (P a ⇔ P' a)) ∧
(∀b. s' = INR b ⇒ (Q b ⇔ Q' b)) ⇒
(SUM_ALL P Q s ⇔ SUM_ALL P' Q' s')
[SUM_ALL_MONO] Theorem
⊢ (∀x. P x ⇒ P' x) ∧ (∀y. Q y ⇒ Q' y) ⇒
SUM_ALL P Q s ⇒
SUM_ALL P' Q' s
[SUM_MAP] Theorem
⊢ ∀f g z.
SUM_MAP f g z =
if ISL z then INL (f (OUTL z)) else INR (g (OUTR z))
[SUM_MAP_CASE] Theorem
⊢ ∀f g z. SUM_MAP f g z = sum_CASE z (INL ∘ f) (INR ∘ g)
[SUM_MAP_I] Theorem
⊢ SUM_MAP I I = I
[SUM_MAP_o] Theorem
⊢ SUM_MAP f g ∘ SUM_MAP h k = SUM_MAP (f ∘ h) (g ∘ k)
[cond_sum_expand] Theorem
⊢ (∀x y z. (if P then INR x else INL y) = INR z ⇔ P ∧ z = x) ∧
(∀x y z. (if P then INR x else INL y) = INL z ⇔ ¬P ∧ z = y) ∧
(∀x y z. (if P then INL x else INR y) = INL z ⇔ P ∧ z = x) ∧
∀x y z. (if P then INL x else INR y) = INR z ⇔ ¬P ∧ z = y
[datatype_sum] Theorem
⊢ DATATYPE (sum INL INR)
[sum_Axiom] Theorem
⊢ ∀f g. ∃h. (∀x. h (INL x) = f x) ∧ ∀y. h (INR y) = g y
[sum_CASES] Theorem
⊢ ∀ss. (∃x. ss = INL x) ∨ ∃y. ss = INR y
[sum_INDUCT] Theorem
⊢ ∀P. (∀x. P (INL x)) ∧ (∀y. P (INR y)) ⇒ ∀s. P s
[sum_axiom] Theorem
⊢ ∀f g. ∃!h. h ∘ INL = f ∧ h ∘ INR = g
[sum_case_cong] Theorem
⊢ ∀M M' f f1.
M = M' ∧ (∀x. M' = INL x ⇒ f x = f' x) ∧
(∀y. M' = INR y ⇒ f1 y = f1' y) ⇒
sum_CASE M f f1 = sum_CASE M' f' f1'
[sum_distinct] Theorem
⊢ ∀x y. INL x ≠ INR y
[sum_distinct1] Theorem
⊢ ∀x y. INR y ≠ INL x
*)
end
HOL 4, Kananaskis-14