Structure sortingTheory
signature sortingTheory =
sig
type thm = Thm.thm
(* Definitions *)
val PART3_DEF : thm
val PARTITION_DEF : thm
val PART_DEF : thm
val PERM_DEF : thm
val PERM_SINGLE_SWAP_DEF : thm
val SORTS_DEF : thm
val STABLE_DEF : thm
(* Theorems *)
val ALL_DISTINCT_PERM : thm
val ALL_DISTINCT_PERM_LIST_TO_SET_TO_LIST : thm
val ALL_DISTINCT_SORTED_WEAKEN : thm
val APPEND_PERM_SYM : thm
val CONS_PERM : thm
val EL_FILTER_COUNT_LIST_LEAST : thm
val FILTER_EQ_LENGTHS_EQ : thm
val FILTER_EQ_REP : thm
val FOLDR_PERM : thm
val LENGTH_QSORT : thm
val MEM_PERM : thm
val PART3_FILTER : thm
val PART_LENGTH : thm
val PART_LENGTH_LEM : thm
val PART_MEM : thm
val PARTs_HAVE_PROP : thm
val PERM3 : thm
val PERM3_FILTER : thm
val PERM_ALL_DISTINCT : thm
val PERM_APPEND : thm
val PERM_APPEND_IFF : thm
val PERM_BIJ : thm
val PERM_BIJ_IFF : thm
val PERM_CONG : thm
val PERM_CONG_2 : thm
val PERM_CONG_APPEND_IFF : thm
val PERM_CONG_APPEND_IFF2 : thm
val PERM_CONS_EQ_APPEND : thm
val PERM_CONS_IFF : thm
val PERM_EQC : thm
val PERM_EQUIVALENCE : thm
val PERM_EQUIVALENCE_ALT_DEF : thm
val PERM_EVERY : thm
val PERM_FILTER : thm
val PERM_FUN_APPEND : thm
val PERM_FUN_APPEND_APPEND_1 : thm
val PERM_FUN_APPEND_APPEND_2 : thm
val PERM_FUN_APPEND_C : thm
val PERM_FUN_APPEND_CONS : thm
val PERM_FUN_APPEND_IFF : thm
val PERM_FUN_CONG : thm
val PERM_FUN_CONS : thm
val PERM_FUN_CONS_11_APPEND : thm
val PERM_FUN_CONS_11_SWAP_AT_FRONT : thm
val PERM_FUN_CONS_APPEND_1 : thm
val PERM_FUN_CONS_APPEND_2 : thm
val PERM_FUN_CONS_IFF : thm
val PERM_FUN_SPLIT : thm
val PERM_FUN_SWAP_AT_FRONT : thm
val PERM_IND : thm
val PERM_INTRO : thm
val PERM_LENGTH : thm
val PERM_LIST_TO_SET : thm
val PERM_MAP : thm
val PERM_MEM_EQ : thm
val PERM_MONO : thm
val PERM_NIL : thm
val PERM_QSORT3 : thm
val PERM_REFL : thm
val PERM_REVERSE : thm
val PERM_REVERSE_EQ : thm
val PERM_REWR : thm
val PERM_RTC : thm
val PERM_SET_TO_LIST_INSERT : thm
val PERM_SET_TO_LIST_count_COUNT_LIST : thm
val PERM_SING : thm
val PERM_SINGLE_SWAP_APPEND : thm
val PERM_SINGLE_SWAP_CONS : thm
val PERM_SINGLE_SWAP_I : thm
val PERM_SINGLE_SWAP_REFL : thm
val PERM_SINGLE_SWAP_SYM : thm
val PERM_SINGLE_SWAP_TC_CONS : thm
val PERM_SPLIT : thm
val PERM_SPLIT_IF : thm
val PERM_STRONG_IND : thm
val PERM_SUM : thm
val PERM_SWAP_AT_FRONT : thm
val PERM_SWAP_L_AT_FRONT : thm
val PERM_SYM : thm
val PERM_TC : thm
val PERM_TO_APPEND_SIMPS : thm
val PERM_TRANS : thm
val PERM_alt : thm
val PERM_lifts_equalities : thm
val PERM_lifts_invariants : thm
val PERM_lifts_monotonicities : thm
val PERM_lifts_transitive_relations : thm
val PERM_transitive : thm
val QSORT3_DEF : thm
val QSORT3_IND : thm
val QSORT3_MEM : thm
val QSORT3_SORTED : thm
val QSORT3_SORTS : thm
val QSORT3_SPLIT : thm
val QSORT3_STABLE : thm
val QSORT_DEF : thm
val QSORT_IND : thm
val QSORT_MEM : thm
val QSORT_PERM : thm
val QSORT_SORTED : thm
val QSORT_SORTS : thm
val QSORT_eq_if_PERM : thm
val QSORT_nub : thm
val SORTED_ALL_DISTINCT : thm
val SORTED_ALL_DISTINCT_LIST_TO_SET_EQ : thm
val SORTED_APPEND : thm
val SORTED_APPEND_GEN : thm
val SORTED_APPEND_IMP : thm
val SORTED_DEF : thm
val SORTED_EL_LESS : thm
val SORTED_EL_SUC : thm
val SORTED_EQ : thm
val SORTED_EQ_PART : thm
val SORTED_FILTER : thm
val SORTED_FILTER_COUNT_LIST : thm
val SORTED_GENLIST_PLUS : thm
val SORTED_IND : thm
val SORTED_NIL : thm
val SORTED_PERM_EQ : thm
val SORTED_SING : thm
val SORTED_TL : thm
val SORTED_adjacent : thm
val SORTED_nub : thm
val SORTED_weaken : thm
val SORTS_PERM_EQ : thm
val SUM_IMAGE_count_MULT : thm
val SUM_IMAGE_count_SUM_GENLIST : thm
val less_sorted_eq : thm
val perm_rules : thm
val sorted_count_list : thm
val sorted_filter : thm
val sorted_lt_count_list : thm
val sorted_map : thm
val sorted_perm_count_list : thm
val sum_of_sums : thm
val sorting_grammars : type_grammar.grammar * term_grammar.grammar
(*
[indexedLists] Parent theory of "sorting"
[patternMatches] Parent theory of "sorting"
[PART3_DEF] Definition
⊢ (∀R h. PART3 R h [] = ([],[],[])) ∧
∀R h hd tl.
PART3 R h (hd::tl) =
if R h hd ∧ R hd h then (I ## CONS hd ## I) (PART3 R h tl)
else if R hd h then (CONS hd ## I ## I) (PART3 R h tl)
else (I ## I ## CONS hd) (PART3 R h tl)
[PARTITION_DEF] Definition
⊢ ∀P l. PARTITION P l = PART P l [] []
[PART_DEF] Definition
⊢ (∀P l1 l2. PART P [] l1 l2 = (l1,l2)) ∧
∀P h rst l1 l2.
PART P (h::rst) l1 l2 =
if P h then PART P rst (h::l1) l2 else PART P rst l1 (h::l2)
[PERM_DEF] Definition
⊢ ∀L1 L2. PERM L1 L2 ⇔ ∀x. FILTER ($= x) L1 = FILTER ($= x) L2
[PERM_SINGLE_SWAP_DEF] Definition
⊢ ∀l1 l2.
PERM_SINGLE_SWAP l1 l2 ⇔
∃x1 x2 x3. l1 = x1 ⧺ x2 ⧺ x3 ∧ l2 = x1 ⧺ x3 ⧺ x2
[SORTS_DEF] Definition
⊢ ∀f R. SORTS f R ⇔ ∀l. PERM l (f R l) ∧ SORTED R (f R l)
[STABLE_DEF] Definition
⊢ ∀sort r.
STABLE sort r ⇔
SORTS sort r ∧
∀p. (∀x y. p x ∧ p y ⇒ r x y) ⇒
∀l. FILTER p l = FILTER p (sort r l)
[ALL_DISTINCT_PERM] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇒ (ALL_DISTINCT l1 ⇔ ALL_DISTINCT l2)
[ALL_DISTINCT_PERM_LIST_TO_SET_TO_LIST] Theorem
⊢ ∀ls. ALL_DISTINCT ls ⇔ PERM ls (SET_TO_LIST (set ls))
[ALL_DISTINCT_SORTED_WEAKEN] Theorem
⊢ ∀R R' ls.
(∀x y. MEM x ls ∧ MEM y ls ∧ x ≠ y ⇒ (R x y ⇔ R' x y)) ∧
ALL_DISTINCT ls ∧ SORTED R ls ⇒
SORTED R' ls
[APPEND_PERM_SYM] Theorem
⊢ ∀A B C. PERM (A ⧺ B) C ⇒ PERM (B ⧺ A) C
[CONS_PERM] Theorem
⊢ ∀x L M N. PERM L (M ⧺ N) ⇒ PERM (x::L) (M ⧺ x::N)
[EL_FILTER_COUNT_LIST_LEAST] Theorem
⊢ ∀n i.
i < LENGTH (FILTER P (COUNT_LIST n)) ⇒
EL i (FILTER P (COUNT_LIST n)) =
LEAST j.
(0 < i ⇒ EL (i − 1) (FILTER P (COUNT_LIST n)) < j) ∧ j < n ∧
P j
[FILTER_EQ_LENGTHS_EQ] Theorem
⊢ LENGTH (FILTER ($= x) l1) = LENGTH (FILTER ($= x) l2) ⇒
FILTER ($= x) l1 = FILTER ($= x) l2
[FILTER_EQ_REP] Theorem
⊢ FILTER ($= x) l = REPLICATE (LENGTH (FILTER ($= x) l)) x
[FOLDR_PERM] Theorem
⊢ ∀f l1 l2 e.
ASSOC f ∧ COMM f ⇒ PERM l1 l2 ⇒ FOLDR f e l1 = FOLDR f e l2
[LENGTH_QSORT] Theorem
⊢ LENGTH (QSORT R l) = LENGTH l
[MEM_PERM] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇒ ∀a. MEM a l1 ⇔ MEM a l2
[PART3_FILTER] Theorem
⊢ ∀tl hd.
PART3 R hd tl =
(FILTER (λx. R x hd ∧ ¬R hd x) tl,
FILTER (λx. R x hd ∧ R hd x) tl,FILTER (λx. ¬R x hd) tl)
[PART_LENGTH] Theorem
⊢ ∀P L l1 l2 p q.
(p,q) = PART P L l1 l2 ⇒
LENGTH L + LENGTH l1 + LENGTH l2 = LENGTH p + LENGTH q
[PART_LENGTH_LEM] Theorem
⊢ ∀P L l1 l2 p q.
(p,q) = PART P L l1 l2 ⇒
LENGTH p ≤ LENGTH L + LENGTH l1 + LENGTH l2 ∧
LENGTH q ≤ LENGTH L + LENGTH l1 + LENGTH l2
[PART_MEM] Theorem
⊢ ∀P L a1 a2 l1 l2.
(a1,a2) = PART P L l1 l2 ⇒
∀x. MEM x (L ⧺ (l1 ⧺ l2)) ⇔ MEM x (a1 ⧺ a2)
[PARTs_HAVE_PROP] Theorem
⊢ ∀P L A B l1 l2.
(A,B) = PART P L l1 l2 ∧ (∀x. MEM x l1 ⇒ P x) ∧
(∀x. MEM x l2 ⇒ ¬P x) ⇒
(∀z. MEM z A ⇒ P z) ∧ ∀z. MEM z B ⇒ ¬P z
[PERM3] Theorem
⊢ ∀x a a' b b' c c'.
(PERM a a' ∧ PERM b b' ∧ PERM c c') ∧ PERM x (a ⧺ b ⧺ c) ⇒
PERM x (a' ⧺ b' ⧺ c')
[PERM3_FILTER] Theorem
⊢ ∀l h.
PERM l
(FILTER (λx. R x h ∧ ¬R h x) l ⧺ FILTER (λx. R x h ∧ R h x) l ⧺
FILTER (λx. ¬R x h) l)
[PERM_ALL_DISTINCT] Theorem
⊢ ∀l1 l2.
ALL_DISTINCT l1 ∧ ALL_DISTINCT l2 ∧ (∀x. MEM x l1 ⇔ MEM x l2) ⇒
PERM l1 l2
[PERM_APPEND] Theorem
⊢ ∀l1 l2. PERM (l1 ⧺ l2) (l2 ⧺ l1)
[PERM_APPEND_IFF] Theorem
⊢ (∀l l1 l2. PERM (l ⧺ l1) (l ⧺ l2) ⇔ PERM l1 l2) ∧
∀l l1 l2. PERM (l1 ⧺ l) (l2 ⧺ l) ⇔ PERM l1 l2
[PERM_BIJ] Theorem
⊢ ∀l1 l2.
PERM l1 l2 ⇒
∃f. f PERMUTES count (LENGTH l1) ∧
l2 = GENLIST (λi. EL (f i) l1) (LENGTH l1)
[PERM_BIJ_IFF] Theorem
⊢ PERM l1 l2 ⇔
∃p. p PERMUTES count (LENGTH l1) ∧
l2 = GENLIST (λi. EL (p i) l1) (LENGTH l1)
[PERM_CONG] Theorem
⊢ ∀L1 L2 L3 L4. PERM L1 L3 ∧ PERM L2 L4 ⇒ PERM (L1 ⧺ L2) (L3 ⧺ L4)
[PERM_CONG_2] Theorem
⊢ ∀l1 l1' l2 l2'.
PERM l1 l1' ⇒ PERM l2 l2' ⇒ (PERM l1 l2 ⇔ PERM l1' l2')
[PERM_CONG_APPEND_IFF] Theorem
⊢ ∀l l1 l1' l2 l2'.
PERM l1 (l ⧺ l1') ⇒
PERM l2 (l ⧺ l2') ⇒
(PERM l1 l2 ⇔ PERM l1' l2')
[PERM_CONG_APPEND_IFF2] Theorem
⊢ ∀l1 l1' l1'' l2 l2' l2''.
PERM l1 (l1' ⧺ l1'') ⇒
PERM l2 (l2' ⧺ l2'') ⇒
PERM l1' l2' ⇒
(PERM l1 l2 ⇔ PERM l1'' l2'')
[PERM_CONS_EQ_APPEND] Theorem
⊢ ∀L h. PERM (h::t) L ⇔ ∃M N. L = M ⧺ h::N ∧ PERM t (M ⧺ N)
[PERM_CONS_IFF] Theorem
⊢ ∀x l2 l1. PERM (x::l1) (x::l2) ⇔ PERM l1 l2
[PERM_EQC] Theorem
⊢ PERM = PERM_SINGLE_SWAP^=
[PERM_EQUIVALENCE] Theorem
⊢ equivalence PERM
[PERM_EQUIVALENCE_ALT_DEF] Theorem
⊢ ∀x y. PERM x y ⇔ PERM x = PERM y
[PERM_EVERY] Theorem
⊢ ∀ls ls'. PERM ls ls' ⇒ (EVERY P ls ⇔ EVERY P ls')
[PERM_FILTER] Theorem
⊢ ∀P l1 l2. PERM l1 l2 ⇒ PERM (FILTER P l1) (FILTER P l2)
[PERM_FUN_APPEND] Theorem
⊢ ∀l1 l2. PERM (l1 ⧺ l2) = PERM (l2 ⧺ l1)
[PERM_FUN_APPEND_APPEND_1] Theorem
⊢ ∀l1 l2 l3 l4.
PERM l1 = PERM (l2 ⧺ l3) ⇒ PERM (l1 ⧺ l4) = PERM (l2 ⧺ (l3 ⧺ l4))
[PERM_FUN_APPEND_APPEND_2] Theorem
⊢ ∀l1 l2 l3 l4.
PERM l1 = PERM (l2 ⧺ l3) ⇒ PERM (l4 ⧺ l1) = PERM (l2 ⧺ (l4 ⧺ l3))
[PERM_FUN_APPEND_C] Theorem
⊢ ∀l1 l1' l2 l2'.
PERM l1 = PERM l1' ⇒
PERM l2 = PERM l2' ⇒
PERM (l1 ⧺ l2) = PERM (l1' ⧺ l2')
[PERM_FUN_APPEND_CONS] Theorem
⊢ ∀x l1 l2. PERM (l1 ⧺ x::l2) = PERM (x::l1 ⧺ l2)
[PERM_FUN_APPEND_IFF] Theorem
⊢ ∀l l1 l2. PERM l1 = PERM l2 ⇒ PERM (l ⧺ l1) = PERM (l ⧺ l2)
[PERM_FUN_CONG] Theorem
⊢ ∀l1 l1' l2 l2'.
PERM l1 = PERM l1' ⇒
PERM l2 = PERM l2' ⇒
(PERM l1 l2 ⇔ PERM l1' l2')
[PERM_FUN_CONS] Theorem
⊢ ∀x l1 l1'. PERM l1 = PERM l1' ⇒ PERM (x::l1) = PERM (x::l1')
[PERM_FUN_CONS_11_APPEND] Theorem
⊢ ∀y l1 l2 l3.
PERM l1 = PERM (l2 ⧺ l3) ⇒ PERM (y::l1) = PERM (l2 ⧺ y::l3)
[PERM_FUN_CONS_11_SWAP_AT_FRONT] Theorem
⊢ ∀y l1 x l2. PERM l1 = PERM (x::l2) ⇒ PERM (y::l1) = PERM (x::y::l2)
[PERM_FUN_CONS_APPEND_1] Theorem
⊢ ∀l l1 x l2.
PERM l1 = PERM (x::l2) ⇒ PERM (l1 ⧺ l) = PERM (x::(l2 ⧺ l))
[PERM_FUN_CONS_APPEND_2] Theorem
⊢ ∀l l1 x l2.
PERM l1 = PERM (x::l2) ⇒ PERM (l ⧺ l1) = PERM (x::(l ⧺ l2))
[PERM_FUN_CONS_IFF] Theorem
⊢ ∀x l1 l2. PERM l1 = PERM l2 ⇒ PERM (x::l1) = PERM (x::l2)
[PERM_FUN_SPLIT] Theorem
⊢ ∀l l1 l1' l2. PERM l (l1 ⧺ l2) ⇒ PERM l1' l1 ⇒ PERM l (l1' ⧺ l2)
[PERM_FUN_SWAP_AT_FRONT] Theorem
⊢ ∀x y l. PERM (x::y::l) = PERM (y::x::l)
[PERM_IND] Theorem
⊢ ∀P. P [] [] ∧ (∀x l1 l2. P l1 l2 ⇒ P (x::l1) (x::l2)) ∧
(∀x y l1 l2. P l1 l2 ⇒ P (x::y::l1) (y::x::l2)) ∧
(∀l1 l2 l3. P l1 l2 ∧ P l2 l3 ⇒ P l1 l3) ⇒
∀l1 l2. PERM l1 l2 ⇒ P l1 l2
[PERM_INTRO] Theorem
⊢ ∀x y. x = y ⇒ PERM x y
[PERM_LENGTH] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇒ LENGTH l1 = LENGTH l2
[PERM_LIST_TO_SET] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇒ set l1 = set l2
[PERM_MAP] Theorem
⊢ ∀f l1 l2. PERM l1 l2 ⇒ PERM (MAP f l1) (MAP f l2)
[PERM_MEM_EQ] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇒ ∀x. MEM x l1 ⇔ MEM x l2
[PERM_MONO] Theorem
⊢ ∀l1 l2 x. PERM l1 l2 ⇒ PERM (x::l1) (x::l2)
[PERM_NIL] Theorem
⊢ ∀L. (PERM L [] ⇔ L = []) ∧ (PERM [] L ⇔ L = [])
[PERM_QSORT3] Theorem
⊢ ∀l R. PERM l (QSORT3 R l)
[PERM_REFL] Theorem
⊢ ∀L. PERM L L
[PERM_REVERSE] Theorem
⊢ PERM ls (REVERSE ls)
[PERM_REVERSE_EQ] Theorem
⊢ (PERM (REVERSE l1) l2 ⇔ PERM l1 l2) ∧
(PERM l1 (REVERSE l2) ⇔ PERM l1 l2)
[PERM_REWR] Theorem
⊢ ∀l r l1 l2. PERM l r ⇒ (PERM (l ⧺ l1) l2 ⇔ PERM (r ⧺ l1) l2)
[PERM_RTC] Theorem
⊢ PERM = PERM_SINGLE_SWAP꙳
[PERM_SET_TO_LIST_INSERT] Theorem
⊢ FINITE s ⇒
PERM (SET_TO_LIST (x INSERT s))
(if x ∈ s then SET_TO_LIST s else x::SET_TO_LIST s)
[PERM_SET_TO_LIST_count_COUNT_LIST] Theorem
⊢ PERM (SET_TO_LIST (count n)) (COUNT_LIST n)
[PERM_SING] Theorem
⊢ (PERM L [x] ⇔ L = [x]) ∧ (PERM [x] L ⇔ L = [x])
[PERM_SINGLE_SWAP_APPEND] Theorem
⊢ PERM_SINGLE_SWAP (x2 ⧺ x3) (x3 ⧺ x2)
[PERM_SINGLE_SWAP_CONS] Theorem
⊢ PERM_SINGLE_SWAP M N ⇒ PERM_SINGLE_SWAP (x::M) (x::N)
[PERM_SINGLE_SWAP_I] Theorem
⊢ PERM_SINGLE_SWAP (x1 ⧺ x2 ⧺ x3) (x1 ⧺ x3 ⧺ x2)
[PERM_SINGLE_SWAP_REFL] Theorem
⊢ ∀l. PERM_SINGLE_SWAP l l
[PERM_SINGLE_SWAP_SYM] Theorem
⊢ ∀l1 l2. PERM_SINGLE_SWAP l1 l2 ⇔ PERM_SINGLE_SWAP l2 l1
[PERM_SINGLE_SWAP_TC_CONS] Theorem
⊢ ∀M N. PERM_SINGLE_SWAP⁺ M N ⇒ PERM_SINGLE_SWAP⁺ (x::M) (x::N)
[PERM_SPLIT] Theorem
⊢ ∀P l. PERM l (FILTER P l ⧺ FILTER ($¬ ∘ P) l)
[PERM_SPLIT_IF] Theorem
⊢ ∀P Q l. EVERY (λx. P x ⇔ ¬Q x) l ⇒ PERM l (FILTER P l ⧺ FILTER Q l)
[PERM_STRONG_IND] Theorem
⊢ ∀P. P [] [] ∧
(∀x l1 l2. PERM l1 l2 ∧ P l1 l2 ⇒ P (x::l1) (x::l2)) ∧
(∀x y l1 l2. PERM l1 l2 ∧ P l1 l2 ⇒ P (x::y::l1) (y::x::l2)) ∧
(∀l1 l2 l3.
PERM l1 l2 ∧ P l1 l2 ∧ PERM l2 l3 ∧ P l2 l3 ⇒ P l1 l3) ⇒
∀l1 l2. PERM l1 l2 ⇒ P l1 l2
[PERM_SUM] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇒ SUM l1 = SUM l2
[PERM_SWAP_AT_FRONT] Theorem
⊢ PERM (x::y::l1) (y::x::l2) ⇔ PERM l1 l2
[PERM_SWAP_L_AT_FRONT] Theorem
⊢ ∀x y. PERM (x ⧺ y ⧺ l1) (y ⧺ x ⧺ l2) ⇔ PERM l1 l2
[PERM_SYM] Theorem
⊢ ∀l1 l2. PERM l1 l2 ⇔ PERM l2 l1
[PERM_TC] Theorem
⊢ PERM = PERM_SINGLE_SWAP⁺
[PERM_TO_APPEND_SIMPS] Theorem
⊢ (PERM (x::l) (x::r1 ⧺ r2) ⇔ PERM l (r1 ⧺ r2)) ∧
(PERM (x::l) (r1 ⧺ x::r2) ⇔ PERM l (r1 ⧺ r2)) ∧
(PERM (xs ⧺ ys ⧺ zs) r ⇔ PERM (xs ⧺ (ys ⧺ zs)) r) ∧
(PERM (x::ys ⧺ zs) r ⇔ PERM (x::(ys ⧺ zs)) r) ∧
(PERM ([] ⧺ l) r ⇔ PERM l r) ∧
(PERM (xs ⧺ l) (xs ⧺ r1 ⧺ r2) ⇔ PERM l (r1 ⧺ r2)) ∧
(PERM (xs ⧺ l) (r1 ⧺ (xs ⧺ r2)) ⇔ PERM l (r1 ⧺ r2)) ∧
(PERM [] ([] ⧺ []) ⇔ T) ∧ (PERM xs (xs ⧺ [] ⧺ []) ⇔ T) ∧
(PERM xs ([] ⧺ (xs ⧺ [])) ⇔ T)
[PERM_TRANS] Theorem
⊢ ∀x y z. PERM x y ∧ PERM y z ⇒ PERM x z
[PERM_alt] Theorem
⊢ ∀L1 L2.
PERM L1 L2 ⇔
∀x. LENGTH (FILTER ($= x) L1) = LENGTH (FILTER ($= x) L2)
[PERM_lifts_equalities] Theorem
⊢ ∀f. (∀x1 x2 x3. f (x1 ⧺ x2 ⧺ x3) = f (x1 ⧺ x3 ⧺ x2)) ⇒
∀x y. PERM x y ⇒ f x = f y
[PERM_lifts_invariants] Theorem
⊢ ∀P. (∀x1 x2 x3. P (x1 ⧺ x2 ⧺ x3) ⇒ P (x1 ⧺ x3 ⧺ x2)) ⇒
∀x y. P x ∧ PERM x y ⇒ P y
[PERM_lifts_monotonicities] Theorem
⊢ ∀f. (∀x1 x2 x3. ∃x1' x2' x3'.
f (x1 ⧺ x2 ⧺ x3) = x1' ⧺ x2' ⧺ x3' ∧
f (x1 ⧺ x3 ⧺ x2) = x1' ⧺ x3' ⧺ x2') ⇒
∀x y. PERM x y ⇒ PERM (f x) (f y)
[PERM_lifts_transitive_relations] Theorem
⊢ ∀f Q.
(∀x1 x2 x3. Q (f (x1 ⧺ x2 ⧺ x3)) (f (x1 ⧺ x3 ⧺ x2))) ∧
transitive Q ⇒
∀x y. PERM x y ⇒ Q (f x) (f y)
[PERM_transitive] Theorem
⊢ transitive PERM
[QSORT3_DEF] Theorem
⊢ (∀R. QSORT3 R [] = []) ∧
∀tl hd R.
QSORT3 R (hd::tl) =
(let
(lo,eq,hi) = PART3 R hd tl
in
QSORT3 R lo ⧺ hd::eq ⧺ QSORT3 R hi)
[QSORT3_IND] Theorem
⊢ ∀P. (∀R. P R []) ∧
(∀R hd tl.
(∀lo eq hi. (lo,eq,hi) = PART3 R hd tl ⇒ P R hi) ∧
(∀lo eq hi. (lo,eq,hi) = PART3 R hd tl ⇒ P R lo) ⇒
P R (hd::tl)) ⇒
∀v v1. P v v1
[QSORT3_MEM] Theorem
⊢ ∀R L x. MEM x (QSORT3 R L) ⇔ MEM x L
[QSORT3_SORTED] Theorem
⊢ ∀R L. transitive R ∧ total R ⇒ SORTED R (QSORT3 R L)
[QSORT3_SORTS] Theorem
⊢ ∀R. transitive R ∧ total R ⇒ SORTS QSORT3 R
[QSORT3_SPLIT] Theorem
⊢ ∀R. transitive R ∧ total R ⇒
∀l e.
QSORT3 R l =
QSORT3 R (FILTER (λx. R x e ∧ ¬R e x) l) ⧺
FILTER (λx. R x e ∧ R e x) l ⧺
QSORT3 R (FILTER (λx. ¬R x e) l)
[QSORT3_STABLE] Theorem
⊢ ∀R. transitive R ∧ total R ⇒ STABLE QSORT3 R
[QSORT_DEF] Theorem
⊢ (∀ord. QSORT ord [] = []) ∧
∀t ord h.
QSORT ord (h::t) =
(let
(l1,l2) = PARTITION (λy. ord y h) t
in
QSORT ord l1 ⧺ [h] ⧺ QSORT ord l2)
[QSORT_IND] Theorem
⊢ ∀P. (∀ord. P ord []) ∧
(∀ord h t.
(∀l1 l2. (l1,l2) = PARTITION (λy. ord y h) t ⇒ P ord l2) ∧
(∀l1 l2. (l1,l2) = PARTITION (λy. ord y h) t ⇒ P ord l1) ⇒
P ord (h::t)) ⇒
∀v v1. P v v1
[QSORT_MEM] Theorem
⊢ ∀R L x. MEM x (QSORT R L) ⇔ MEM x L
[QSORT_PERM] Theorem
⊢ ∀R L. PERM L (QSORT R L)
[QSORT_SORTED] Theorem
⊢ ∀R L. transitive R ∧ total R ⇒ SORTED R (QSORT R L)
[QSORT_SORTS] Theorem
⊢ ∀R. transitive R ∧ total R ⇒ SORTS QSORT R
[QSORT_eq_if_PERM] Theorem
⊢ ∀R. total R ∧ transitive R ∧ antisymmetric R ⇒
∀l1 l2. QSORT R l1 = QSORT R l2 ⇔ PERM l1 l2
[QSORT_nub] Theorem
⊢ transitive R ∧ antisymmetric R ∧ total R ⇒
QSORT R (nub ls) = nub (QSORT R ls)
[SORTED_ALL_DISTINCT] Theorem
⊢ irreflexive R ∧ transitive R ⇒ ∀ls. SORTED R ls ⇒ ALL_DISTINCT ls
[SORTED_ALL_DISTINCT_LIST_TO_SET_EQ] Theorem
⊢ ∀R. transitive R ∧ antisymmetric R ⇒
∀l1 l2.
SORTED R l1 ∧ SORTED R l2 ∧ ALL_DISTINCT l1 ∧
ALL_DISTINCT l2 ∧ set l1 = set l2 ⇒
l1 = l2
[SORTED_APPEND] Theorem
⊢ ∀R L1 L2.
transitive R ⇒
(SORTED R (L1 ⧺ L2) ⇔
SORTED R L1 ∧ SORTED R L2 ∧ ∀x y. MEM x L1 ⇒ MEM y L2 ⇒ R x y)
[SORTED_APPEND_GEN] Theorem
⊢ ∀R L1 L2.
SORTED R (L1 ⧺ L2) ⇔
SORTED R L1 ∧ SORTED R L2 ∧
(L1 = [] ∨ L2 = [] ∨ R (LAST L1) (HD L2))
[SORTED_APPEND_IMP] Theorem
⊢ ∀R L1 L2.
transitive R ∧ SORTED R L1 ∧ SORTED R L2 ∧
(∀x y. MEM x L1 ∧ MEM y L2 ⇒ R x y) ⇒
SORTED R (L1 ⧺ L2)
[SORTED_DEF] Theorem
⊢ (∀R. SORTED R [] ⇔ T) ∧ (∀x R. SORTED R [x] ⇔ T) ∧
∀y x rst R. SORTED R (x::y::rst) ⇔ R x y ∧ SORTED R (y::rst)
[SORTED_EL_LESS] Theorem
⊢ ∀R. transitive R ⇒
∀ls.
SORTED R ls ⇔
∀m n. m < n ∧ n < LENGTH ls ⇒ R (EL m ls) (EL n ls)
[SORTED_EL_SUC] Theorem
⊢ ∀R ls.
SORTED R ls ⇔ ∀n. SUC n < LENGTH ls ⇒ R (EL n ls) (EL (SUC n) ls)
[SORTED_EQ] Theorem
⊢ ∀R L x.
transitive R ⇒
(SORTED R (x::L) ⇔ SORTED R L ∧ ∀y. MEM y L ⇒ R x y)
[SORTED_EQ_PART] Theorem
⊢ ∀l R. transitive R ⇒ SORTED R (FILTER (λx. R x hd ∧ R hd x) l)
[SORTED_FILTER] Theorem
⊢ ∀R ls P. transitive R ∧ SORTED R ls ⇒ SORTED R (FILTER P ls)
[SORTED_FILTER_COUNT_LIST] Theorem
⊢ SORTED R (FILTER P (COUNT_LIST m)) ⇔
∀i j.
i < j ∧ j < m ∧ P i ∧ P j ∧ (∀k. i < k ∧ k < j ⇒ ¬P k) ⇒ R i j
[SORTED_GENLIST_PLUS] Theorem
⊢ ∀n k. SORTED $< (GENLIST ($+ k) n)
[SORTED_IND] Theorem
⊢ ∀P. (∀R. P R []) ∧ (∀R x. P R [x]) ∧
(∀R x y rst. P R (y::rst) ⇒ P R (x::y::rst)) ⇒
∀v v1. P v v1
[SORTED_NIL] Theorem
⊢ ∀R. SORTED R []
[SORTED_PERM_EQ] Theorem
⊢ ∀R. transitive R ∧ antisymmetric R ⇒
∀l1 l2. SORTED R l1 ∧ SORTED R l2 ∧ PERM l1 l2 ⇒ l1 = l2
[SORTED_SING] Theorem
⊢ ∀R x. SORTED R [x]
[SORTED_TL] Theorem
⊢ SORTED R (x::xs) ⇒ SORTED R xs
[SORTED_adjacent] Theorem
⊢ SORTED R L ⇔ adjacent L ⊆ᵣ R
[SORTED_nub] Theorem
⊢ transitive R ∧ SORTED R ls ⇒ SORTED R (nub ls)
[SORTED_weaken] Theorem
⊢ ∀R R' ls.
SORTED R ls ∧ (∀x y. MEM x ls ∧ MEM y ls ∧ R x y ⇒ R' x y) ⇒
SORTED R' ls
[SORTS_PERM_EQ] Theorem
⊢ ∀R. transitive R ∧ antisymmetric R ∧ SORTS f R ⇒
∀l1 l2. f R l1 = f R l2 ⇔ PERM l1 l2
[SUM_IMAGE_count_MULT] Theorem
⊢ (∀m. m < n ⇒ g m = ∑ (λx. f (x + k * m)) (count k)) ⇒
∑ f (count (k * n)) = ∑ g (count n)
[SUM_IMAGE_count_SUM_GENLIST] Theorem
⊢ ∑ f (count n) = SUM (GENLIST f n)
[less_sorted_eq] Theorem
⊢ ∀L x. SORTED $< (x::L) ⇔ SORTED $< L ∧ ∀y. MEM y L ⇒ x < y
[perm_rules] Theorem
⊢ (permdef :-
∀l1 l2.
perm l1 l2 ⇔
∀P. P [] [] ∧ (∀x l1 l2. P l1 l2 ⇒ P (x::l1) (x::l2)) ∧
(∀x y l1 l2. P l1 l2 ⇒ P (x::y::l1) (y::x::l2)) ∧
(∀l1 l2 l3. P l1 l2 ∧ P l2 l3 ⇒ P l1 l3) ⇒
P l1 l2) ⇒
perm [] [] ∧ (∀x l1 l2. perm l1 l2 ⇒ perm (x::l1) (x::l2)) ∧
(∀x y l1 l2. perm l1 l2 ⇒ perm (x::y::l1) (y::x::l2)) ∧
∀l1 l2 l3. perm l1 l2 ∧ perm l2 l3 ⇒ perm l1 l3
[sorted_count_list] Theorem
⊢ ∀n. SORTED $<= (COUNT_LIST n)
[sorted_filter] Theorem
⊢ ∀R ls. transitive R ⇒ SORTED R ls ⇒ SORTED R (FILTER P ls)
[sorted_lt_count_list] Theorem
⊢ ∀n. SORTED $< (COUNT_LIST n)
[sorted_map] Theorem
⊢ ∀R f l. SORTED R (MAP f l) ⇔ SORTED (inv_image R f) l
[sorted_perm_count_list] Theorem
⊢ ∀y f l n.
SORTED (inv_image $<= f) l ∧ PERM (MAP f l) (COUNT_LIST n) ⇒
MAP f l = COUNT_LIST n
[sum_of_sums] Theorem
⊢ ∑ (λm. ∑ (f m) (count a)) (count b) =
∑ (λm. f (m DIV a) (m MOD a)) (count (a * b))
*)
end
HOL 4, Kananaskis-14