Structure simpleSetCatTheory
signature simpleSetCatTheory =
sig
type thm = Thm.thm
(* Definitions *)
val Delta_def : thm
val Gr_def : thm
val RIMAGE_def : thm
val RINV_IMAGE_def : thm
val SPO_def : thm
val SPO_pimg_def : thm
val SPOr_def : thm
val cardgt_def : thm
val eps_def : thm
val kernel_def : thm
val restr_def : thm
val shom_def : thm
val span_def : thm
(* Theorems *)
val Delta_IMAGE : thm
val Delta_INTER : thm
val Gr_Id : thm
val Gr_restr : thm
val IN_UNCURRY : thm
val RIMAGE_Gr : thm
val RINV_IMAGE_Gr : thm
val SPOr_REFL : thm
val SPOr_lemma : thm
val Spushout_def : thm
val Spushout_ind : thm
val Spushout_quotient : thm
val Spushout_sym : thm
val Spushout_transfer : thm
val Spushouts_iso : thm
val cardgt0 : thm
val cardgt1_INJ_bool : thm
val eps_partition : thm
val kernel_graph : thm
val oID : thm
val restr_EMPTY : thm
val restr_applies : thm
val restr_cases : thm
val restr_restr_o : thm
val shom_into_EMPTY : thm
val shom_outof_EMPTY : thm
val shoms_exist : thm
val symmetric_SPOr : thm
val transitive_SPOr : thm
val unit_pushout : thm
val simpleSetCat_grammars : type_grammar.grammar * term_grammar.grammar
(*
[cardinal] Parent theory of "simpleSetCat"
[Delta_def] Definition
⊢ ∀V a b. Δ V a b ⇔ a = b ∧ a ∈ V
[Gr_def] Definition
⊢ ∀h A a b. Gr h A a b ⇔ a ∈ A ∧ b = h a
[RIMAGE_def] Definition
⊢ ∀f A R x y.
RIMAGE f A R x y ⇔
∃x0 y0. x = f x0 ∧ y = f y0 ∧ R x0 y0 ∧ x0 ∈ A ∧ y0 ∈ A
[RINV_IMAGE_def] Definition
⊢ ∀f A R x y. RINV_IMAGE f A R x y ⇔ x ∈ A ∧ y ∈ A ∧ R (f x) (f y)
[SPO_def] Definition
⊢ ∀A B C f g.
SPO A B C f g =
(partition (SPOr A f g) (B ⊔ C),
restr (λb. {a | a ∈ B ⊔ C ∧ SPOr A f g (INL b) a}) B,
restr (λc. {a | a ∈ B ⊔ C ∧ SPOr A f g (INR c) a}) C)
[SPO_pimg_def] Definition
⊢ (∀A f g x. SPO_pimg A f g (INL x) = PREIMAGE f {x} ∩ A) ∧
∀A f g y. SPO_pimg A f g (INR y) = PREIMAGE g {y} ∩ A
[SPOr_def] Definition
⊢ ∀A f g.
SPOr A f g =
(λx y. (∃a. a ∈ A ∧ x = INL (f a) ∧ y = INR (g a)) ∨ x = y)^=
[cardgt_def] Definition
⊢ ∀n. cardgt (:α) n ⇔ FINITE 𝕌(:α) ⇒ n < CARD 𝕌(:α)
[eps_def] Definition
⊢ ∀R A a. eps R A a = if a ∈ A then {b | R a b ∧ b ∈ A} else ARB
[kernel_def] Definition
⊢ ∀A f x y. kernel A f x y ⇔ x ∈ A ∧ y ∈ A ∧ f x = f y
[restr_def] Definition
⊢ ∀f s. restr f s = (λx. if x ∈ s then f x else ARB)
[shom_def] Definition
⊢ ∀f A B. shom f A B ⇔ (∀a. a ∈ A ⇒ f a ∈ B) ∧ ∀a. a ∉ A ⇒ f a = ARB
[span_def] Definition
⊢ ∀A f g b d. span A f g b d ⇔ ∃a. a ∈ A ∧ b = f a ∧ d = g a
[Delta_IMAGE] Theorem
⊢ Δ (IMAGE f A) = RIMAGE f A (Δ A)
[Delta_INTER] Theorem
⊢ Δ (s ∩ t) = Δ s ∩ᵣ Δ t
[Gr_Id] Theorem
⊢ Gr (λx. x) A = Δ A
[Gr_restr] Theorem
⊢ Gr (restr f A) A = Gr f A
[IN_UNCURRY] Theorem
⊢ (a,b) ∈ UNCURRY R ⇔ R a b
[RIMAGE_Gr] Theorem
⊢ RIMAGE f A R = Gr f A ∘ᵣ R ∘ᵣ (Gr f A)ᵀ
[RINV_IMAGE_Gr] Theorem
⊢ RINV_IMAGE f A R = (Gr f A)ᵀ ∘ᵣ R ∘ᵣ Gr f A
[SPOr_REFL] Theorem
⊢ SPOr A f g x x
[SPOr_lemma] Theorem
⊢ restr (j1 ∘ f) A = restr (j2 ∘ g) A ⇒
(∀b1 b2. SPOr A f g (INL b1) (INL b2) ⇒ j1 b1 = j1 b2) ∧
(∀b c. SPOr A f g (INL b) (INR c) ⇒ j1 b = j2 c) ∧
(∀b' c'. SPOr A f g (INR c') (INL b') ⇒ j1 b' = j2 c') ∧
∀c1 c2. SPOr A f g (INR c1) (INR c2) ⇒ j2 c1 = j2 c2
[Spushout_def] Theorem
⊢ Spushout A B C' f g (P,i1,i2) (:δ) ⇔
shom f A B ∧ shom g A C' ∧ shom i1 B P ∧ shom i2 C' P ∧
restr (i1 ∘ f) A = restr (i2 ∘ g) A ∧
∀Q j1 j2.
shom j1 B Q ∧ shom j2 C' Q ∧ restr (j1 ∘ f) A = restr (j2 ∘ g) A ⇒
∃!u. shom u P Q ∧ restr (u ∘ i1) B = j1 ∧ restr (u ∘ i2) C' = j2
[Spushout_ind] Theorem
⊢ ∀P'.
(∀A B C f g P i1 i2. P' A B C f g (P,i1,i2) (:δ)) ⇒
∀v v1 v2 v3 v4 v5 v6 v7 v8. P' v v1 v2 v3 v4 (v5,v6,v7) v8
[Spushout_quotient] Theorem
⊢ shom f A B ∧ shom g A C ⇒ Spushout A B C f g (SPO A B C f g) (:δ)
[Spushout_sym] Theorem
⊢ Spushout A B C f g (P,p1,p2) (:δ) ⇒
Spushout A C B g f (P,p2,p1) (:δ)
[Spushout_transfer] Theorem
⊢ Spushout A B C f g (P,i1,i2) (:δ) ∧ INJ h 𝕌(:ε) 𝕌(:δ) ⇒
Spushout A B C f g (P,i1,i2) (:ε)
[Spushouts_iso] Theorem
⊢ Spushout A B C f g (P,i1,i2) (:ε) ∧
Spushout A B C f g (Q,j1,j2) (:δ) ∧ cardgt (:δ) 1 ∧ cardgt (:ε) 1 ⇒
∃H. BIJ H P Q ∧ restr (H ∘ i1) B = j1 ∧ restr (H ∘ i2) C = j2
[cardgt0] Theorem
⊢ cardgt (:α) 0
[cardgt1_INJ_bool] Theorem
⊢ cardgt (:α) 1 ⇔ ∃bf. INJ bf {T; F} 𝕌(:α)
[eps_partition] Theorem
⊢ a ∈ A ⇒ eps R A a ∈ partition R A
[kernel_graph] Theorem
⊢ kernel A f = (Gr f A)ᵀ ∘ᵣ Gr f A
[oID] Theorem
⊢ f ∘ (λx. x) = f ∧ (λx. x) ∘ f = f
[restr_EMPTY] Theorem
⊢ restr f ∅ = K ARB
[restr_applies] Theorem
⊢ x ∈ A ⇒ restr f A x = f x
[restr_cases] Theorem
⊢ restr f A x = g x ⇔ x ∈ A ∧ f x = g x ∨ x ∉ A ∧ g x = ARB
[restr_restr_o] Theorem
⊢ restr (f ∘ restr g A) A = restr (f ∘ g) A
[shom_into_EMPTY] Theorem
⊢ shom f A ∅ ⇔ A = ∅ ∧ f = K ARB
[shom_outof_EMPTY] Theorem
⊢ shom f ∅ A ⇔ f = K ARB
[shoms_exist] Theorem
⊢ ∀A B. B ≠ ∅ ⇒ ∃h. shom h A B
[symmetric_SPOr] Theorem
⊢ symmetric (SPOr A f g)
[transitive_SPOr] Theorem
⊢ transitive (SPOr A f g)
[unit_pushout] Theorem
⊢ shom f A B ∧ shom g A C ∧ A ≠ ∅ ⇒
Spushout A B C f g ({()},restr (K ()) B,restr (K ()) C) (:unit)
*)
end
HOL 4, Kananaskis-14