Structure res_quanTheory
signature res_quanTheory =
sig
type thm = Thm.thm
(* Theorems *)
val IN_BIGINTER_RES_FORALL : thm
val IN_BIGUNION_RES_EXISTS : thm
val NOT_RES_EXISTS : thm
val NOT_RES_FORALL : thm
val RES_ABSTRACT : thm
val RES_ABSTRACT_EQUAL : thm
val RES_ABSTRACT_EQUAL_EQ : thm
val RES_ABSTRACT_IDEMPOT : thm
val RES_ABSTRACT_UNIV : thm
val RES_DISJ_EXISTS_DIST : thm
val RES_EXISTS : thm
val RES_EXISTS_ALT : thm
val RES_EXISTS_BIGINTER : thm
val RES_EXISTS_BIGUNION : thm
val RES_EXISTS_DIFF : thm
val RES_EXISTS_DISJ_DIST : thm
val RES_EXISTS_EMPTY : thm
val RES_EXISTS_EQUAL : thm
val RES_EXISTS_F : thm
val RES_EXISTS_NOT_EMPTY : thm
val RES_EXISTS_NULL : thm
val RES_EXISTS_REORDER : thm
val RES_EXISTS_SUBSET : thm
val RES_EXISTS_T : thm
val RES_EXISTS_UNION : thm
val RES_EXISTS_UNIQUE : thm
val RES_EXISTS_UNIQUE_ALT : thm
val RES_EXISTS_UNIQUE_ELIM : thm
val RES_EXISTS_UNIQUE_EMPTY : thm
val RES_EXISTS_UNIQUE_EXISTS : thm
val RES_EXISTS_UNIQUE_F : thm
val RES_EXISTS_UNIQUE_NOT_EMPTY : thm
val RES_EXISTS_UNIQUE_NULL : thm
val RES_EXISTS_UNIQUE_SING : thm
val RES_EXISTS_UNIQUE_T : thm
val RES_EXISTS_UNIQUE_UNIV : thm
val RES_EXISTS_UNIV : thm
val RES_FORALL : thm
val RES_FORALL_BIGINTER : thm
val RES_FORALL_BIGUNION : thm
val RES_FORALL_CONJ_DIST : thm
val RES_FORALL_DIFF : thm
val RES_FORALL_DISJ_DIST : thm
val RES_FORALL_EMPTY : thm
val RES_FORALL_F : thm
val RES_FORALL_FORALL : thm
val RES_FORALL_NOT_EMPTY : thm
val RES_FORALL_NULL : thm
val RES_FORALL_REORDER : thm
val RES_FORALL_SUBSET : thm
val RES_FORALL_T : thm
val RES_FORALL_UNION : thm
val RES_FORALL_UNIQUE : thm
val RES_FORALL_UNIV : thm
val RES_SELECT : thm
val RES_SELECT_EMPTY : thm
val RES_SELECT_UNIV : thm
val res_quan_grammars : type_grammar.grammar * term_grammar.grammar
(*
[pred_set] Parent theory of "res_quan"
[IN_BIGINTER_RES_FORALL] Theorem
⊢ ∀x sos. x ∈ BIGINTER sos ⇔ ∀s::sos. x ∈ s
[IN_BIGUNION_RES_EXISTS] Theorem
⊢ ∀x sos. x ∈ BIGUNION sos ⇔ ∃s::sos. x ∈ s
[NOT_RES_EXISTS] Theorem
⊢ ∀P s. ¬(∃x::s. P x) ⇔ ∀x::s. ¬P x
[NOT_RES_FORALL] Theorem
⊢ ∀P s. ¬(∀x::s. P x) ⇔ ∃x::s. ¬P x
[RES_ABSTRACT] Theorem
⊢ ∀p m x. x ∈ p ⇒ RES_ABSTRACT p m x = m x
[RES_ABSTRACT_EQUAL] Theorem
⊢ ∀p m1 m2.
(∀x. x ∈ p ⇒ m1 x = m2 x) ⇒ RES_ABSTRACT p m1 = RES_ABSTRACT p m2
[RES_ABSTRACT_EQUAL_EQ] Theorem
⊢ ∀p m1 m2.
RES_ABSTRACT p m1 = RES_ABSTRACT p m2 ⇔ ∀x. x ∈ p ⇒ m1 x = m2 x
[RES_ABSTRACT_IDEMPOT] Theorem
⊢ ∀p m. RES_ABSTRACT p (RES_ABSTRACT p m) = RES_ABSTRACT p m
[RES_ABSTRACT_UNIV] Theorem
⊢ ∀m. RES_ABSTRACT 𝕌(:α) m = m
[RES_DISJ_EXISTS_DIST] Theorem
⊢ ∀P Q R. (∃i::(λi. P i ∨ Q i). R i) ⇔ (∃i::P. R i) ∨ ∃i::Q. R i
[RES_EXISTS] Theorem
⊢ ∀P f. RES_EXISTS P f ⇔ ∃x. x ∈ P ∧ f x
[RES_EXISTS_ALT] Theorem
⊢ ∀p m. RES_EXISTS p m ⇔ RES_SELECT p m ∈ p ∧ m (RES_SELECT p m)
[RES_EXISTS_BIGINTER] Theorem
⊢ ∀P sos. (∃x::BIGINTER sos. P x) ⇔ ∃x. (∀s::sos. x ∈ s) ∧ P x
[RES_EXISTS_BIGUNION] Theorem
⊢ ∀P sos. (∃x::BIGUNION sos. P x) ⇔ ∃(s::sos) (x::s). P x
[RES_EXISTS_DIFF] Theorem
⊢ ∀P s t x. (∃x::s DIFF t. P x) ⇔ ∃x::s. x ∉ t ∧ P x
[RES_EXISTS_DISJ_DIST] Theorem
⊢ ∀P Q R. (∃i::P. Q i ∨ R i) ⇔ (∃i::P. Q i) ∨ ∃i::P. R i
[RES_EXISTS_EMPTY] Theorem
⊢ ∀p. ¬RES_EXISTS ∅ p
[RES_EXISTS_EQUAL] Theorem
⊢ ∀P j. (∃i:: $= j. P i) ⇔ P j
[RES_EXISTS_F] Theorem
⊢ ∀P s x. ¬∃s::x. F
[RES_EXISTS_NOT_EMPTY] Theorem
⊢ ∀P s. RES_EXISTS s P ⇒ s ≠ ∅
[RES_EXISTS_NULL] Theorem
⊢ ∀p m. (∃x::p. m) ⇔ p ≠ ∅ ∧ m
[RES_EXISTS_REORDER] Theorem
⊢ ∀P Q R. (∃(i::P) (j::Q). R i j) ⇔ ∃(j::Q) (i::P). R i j
[RES_EXISTS_SUBSET] Theorem
⊢ ∀P s t. s ⊆ t ⇒ RES_EXISTS s P ⇒ RES_EXISTS t P
[RES_EXISTS_T] Theorem
⊢ ∀P s x. (∃x::s. T) ⇔ s ≠ ∅
[RES_EXISTS_UNION] Theorem
⊢ ∀P s t. RES_EXISTS (s ∪ t) P ⇔ RES_EXISTS s P ∨ RES_EXISTS t P
[RES_EXISTS_UNIQUE] Theorem
⊢ ∀P f.
RES_EXISTS_UNIQUE P f ⇔ (∃x::P. f x) ∧ ∀x y::P. f x ∧ f y ⇒ x = y
[RES_EXISTS_UNIQUE_ALT] Theorem
⊢ ∀p m. RES_EXISTS_UNIQUE p m ⇔ ∃x::p. m x ∧ ∀y::p. m y ⇒ y = x
[RES_EXISTS_UNIQUE_ELIM] Theorem
⊢ ∀P s. (∃!x::s. P x) ⇔ ∃!x. x ∈ s ∧ P x
[RES_EXISTS_UNIQUE_EMPTY] Theorem
⊢ ∀p. ¬RES_EXISTS_UNIQUE ∅ p
[RES_EXISTS_UNIQUE_EXISTS] Theorem
⊢ ∀P s. RES_EXISTS_UNIQUE P s ⇒ RES_EXISTS P s
[RES_EXISTS_UNIQUE_F] Theorem
⊢ ∀P s x. ¬∃!x::s. F
[RES_EXISTS_UNIQUE_NOT_EMPTY] Theorem
⊢ ∀P s. RES_EXISTS_UNIQUE s P ⇒ s ≠ ∅
[RES_EXISTS_UNIQUE_NULL] Theorem
⊢ ∀p m. (∃!x::p. m) ⇔ (∃x. p = {x}) ∧ m
[RES_EXISTS_UNIQUE_SING] Theorem
⊢ ∀P s x. (∃!x::s. T) ⇔ ∃y. s = {y}
[RES_EXISTS_UNIQUE_T] Theorem
⊢ ∀P s x. (∃!x::s. T) ⇔ ∃!x. x ∈ s
[RES_EXISTS_UNIQUE_UNIV] Theorem
⊢ ∀p. RES_EXISTS_UNIQUE 𝕌(:α) p ⇔ $?! p
[RES_EXISTS_UNIV] Theorem
⊢ ∀p. RES_EXISTS 𝕌(:α) p ⇔ $? p
[RES_FORALL] Theorem
⊢ ∀P f. RES_FORALL P f ⇔ ∀x. x ∈ P ⇒ f x
[RES_FORALL_BIGINTER] Theorem
⊢ ∀P sos. (∀x::BIGINTER sos. P x) ⇔ ∀x. (∀s::sos. x ∈ s) ⇒ P x
[RES_FORALL_BIGUNION] Theorem
⊢ ∀P sos. (∀x::BIGUNION sos. P x) ⇔ ∀(s::sos) (x::s). P x
[RES_FORALL_CONJ_DIST] Theorem
⊢ ∀P Q R. (∀i::P. Q i ∧ R i) ⇔ (∀i::P. Q i) ∧ ∀i::P. R i
[RES_FORALL_DIFF] Theorem
⊢ ∀P s t x. (∀x::s DIFF t. P x) ⇔ ∀x::s. x ∉ t ⇒ P x
[RES_FORALL_DISJ_DIST] Theorem
⊢ ∀P Q R. (∀i::(λj. P j ∨ Q j). R i) ⇔ (∀i::P. R i) ∧ ∀i::Q. R i
[RES_FORALL_EMPTY] Theorem
⊢ ∀p. RES_FORALL ∅ p
[RES_FORALL_F] Theorem
⊢ ∀P s x. (∀x::s. F) ⇔ s = ∅
[RES_FORALL_FORALL] Theorem
⊢ ∀P R x. (∀x (i::P). R i x) ⇔ ∀(i::P) x. R i x
[RES_FORALL_NOT_EMPTY] Theorem
⊢ ∀P s. ¬RES_FORALL s P ⇒ s ≠ ∅
[RES_FORALL_NULL] Theorem
⊢ ∀p m. (∀x::p. m) ⇔ p = ∅ ∨ m
[RES_FORALL_REORDER] Theorem
⊢ ∀P Q R. (∀(i::P) (j::Q). R i j) ⇔ ∀(j::Q) (i::P). R i j
[RES_FORALL_SUBSET] Theorem
⊢ ∀P s t. s ⊆ t ⇒ RES_FORALL t P ⇒ RES_FORALL s P
[RES_FORALL_T] Theorem
⊢ ∀P s x (x::s). T
[RES_FORALL_UNION] Theorem
⊢ ∀P s t. RES_FORALL (s ∪ t) P ⇔ RES_FORALL s P ∧ RES_FORALL t P
[RES_FORALL_UNIQUE] Theorem
⊢ ∀P j. (∀i:: $= j. P i) ⇔ P j
[RES_FORALL_UNIV] Theorem
⊢ ∀p. RES_FORALL 𝕌(:α) p ⇔ $! p
[RES_SELECT] Theorem
⊢ ∀P f. RES_SELECT P f = @x. x ∈ P ∧ f x
[RES_SELECT_EMPTY] Theorem
⊢ ∀p. RES_SELECT ∅ p = @x. F
[RES_SELECT_UNIV] Theorem
⊢ ∀p. RES_SELECT 𝕌(:α) p = $@ p
*)
end
HOL 4, Kananaskis-14