Structure real_probabilityTheory
signature real_probabilityTheory =
sig
type thm = Thm.thm
(* Definitions *)
val cond_prob_def : thm
val conditional_distribution_def : thm
val conditional_expectation_def : thm
val conditional_prob_def : thm
val distribution_def : thm
val events_def : thm
val expectation_def : thm
val indep_def : thm
val indep_families_def : thm
val indep_function_def : thm
val indep_rv_def : thm
val joint_distribution3_def : thm
val joint_distribution_def : thm
val p_space_def : thm
val possibly_def : thm
val prob_def : thm
val prob_preserving_def : thm
val prob_space_def : thm
val probably_def : thm
val random_variable_def : thm
val real_random_variable_def : thm
val rv_conditional_expectation_def : thm
val uniform_distribution_def : thm
(* Theorems *)
val ABS_1_MINUS_PROB : thm
val ABS_PROB : thm
val ADDITIVE_PROB : thm
val BAYES_RULE : thm
val BAYES_RULE_GENERAL_SIGMA : thm
val COND_PROB_ADDITIVE : thm
val COND_PROB_BOUNDS : thm
val COND_PROB_COMPL : thm
val COND_PROB_DIFF : thm
val COND_PROB_FINITE_ADDITIVE : thm
val COND_PROB_INCREASING : thm
val COND_PROB_INTER_SPLIT : thm
val COND_PROB_INTER_ZERO : thm
val COND_PROB_ITSELF : thm
val COND_PROB_MUL_EQ : thm
val COND_PROB_MUL_RULE : thm
val COND_PROB_POS_IMP_PROB_NZ : thm
val COND_PROB_SWAP : thm
val COND_PROB_ZERO : thm
val COND_PROB_ZERO_INTER : thm
val COUNTABLY_ADDITIVE_PROB : thm
val EVENTS : thm
val EVENTS_ALGEBRA : thm
val EVENTS_BIGUNION : thm
val EVENTS_COMPL : thm
val EVENTS_COUNTABLE_INTER : thm
val EVENTS_COUNTABLE_UNION : thm
val EVENTS_DIFF : thm
val EVENTS_EMPTY : thm
val EVENTS_INTER : thm
val EVENTS_SIGMA_ALGEBRA : thm
val EVENTS_SPACE : thm
val EVENTS_UNION : thm
val INCREASING_PROB : thm
val INDEP_EMPTY : thm
val INDEP_REFL : thm
val INDEP_SPACE : thm
val INDEP_SYM : thm
val INTER_PSPACE : thm
val POSITIVE_PROB : thm
val PROB : thm
val PROB_ADDITIVE : thm
val PROB_COMPL : thm
val PROB_COMPL_LE1 : thm
val PROB_COUNTABLY_ADDITIVE : thm
val PROB_COUNTABLY_SUBADDITIVE : thm
val PROB_COUNTABLY_ZERO : thm
val PROB_DISCRETE_EVENTS : thm
val PROB_DISCRETE_EVENTS_COUNTABLE : thm
val PROB_EMPTY : thm
val PROB_EQUIPROBABLE_FINITE_UNIONS : thm
val PROB_EQ_BIGUNION_IMAGE : thm
val PROB_EQ_COMPL : thm
val PROB_FINITELY_ADDITIVE : thm
val PROB_FINITE_ADDITIVE : thm
val PROB_INCREASING : thm
val PROB_INCREASING_UNION : thm
val PROB_INDEP : thm
val PROB_INTER_SPLIT : thm
val PROB_INTER_ZERO : thm
val PROB_LE_1 : thm
val PROB_ONE_INTER : thm
val PROB_POSITIVE : thm
val PROB_PRESERVING : thm
val PROB_PRESERVING_LIFT : thm
val PROB_PRESERVING_SUBSET : thm
val PROB_PRESERVING_UP_LIFT : thm
val PROB_PRESERVING_UP_SIGMA : thm
val PROB_PRESERVING_UP_SUBSET : thm
val PROB_REAL_SUM_IMAGE : thm
val PROB_REAL_SUM_IMAGE_FN : thm
val PROB_REAL_SUM_IMAGE_SPACE : thm
val PROB_SPACE : thm
val PROB_SPACE_ADDITIVE : thm
val PROB_SPACE_COUNTABLY_ADDITIVE : thm
val PROB_SPACE_INCREASING : thm
val PROB_SPACE_POSITIVE : thm
val PROB_SUBADDITIVE : thm
val PROB_UNIV : thm
val PROB_ZERO_INTER : thm
val PROB_ZERO_UNION : thm
val PSPACE : thm
val TOTAL_PROB_SIGMA : thm
val conditional_distribution_le_1 : thm
val conditional_distribution_pos : thm
val distribution_lebesgue_thm1 : thm
val distribution_lebesgue_thm2 : thm
val distribution_pos : thm
val distribution_prob_space : thm
val distribution_x_eq_1_imp_distribution_y_eq_0 : thm
val finite_expectation : thm
val finite_expectation1 : thm
val finite_marginal_product_space_POW : thm
val finite_marginal_product_space_POW2 : thm
val finite_marginal_product_space_POW3 : thm
val joint_conditional : thm
val joint_distribution_le : thm
val joint_distribution_le2 : thm
val joint_distribution_le_1 : thm
val joint_distribution_pos : thm
val joint_distribution_sum_mul1 : thm
val joint_distribution_sums_1 : thm
val joint_distribution_sym : thm
val marginal_distribution1 : thm
val marginal_distribution2 : thm
val marginal_joint_zero : thm
val marginal_joint_zero3 : thm
val prob_x_eq_1_imp_prob_y_eq_0 : thm
val uniform_distribution_prob_space : thm
val real_probability_grammars : type_grammar.grammar * term_grammar.grammar
(*
[real_lebesgue] Parent theory of "real_probability"
[cond_prob_def] Definition
⊢ ∀p e1 e2. cond_prob p e1 e2 = prob p (e1 ∩ e2) / prob p e2
[conditional_distribution_def] Definition
⊢ ∀p X Y a b.
conditional_distribution p X Y a b =
joint_distribution p X Y (a × b) / distribution p Y b
[conditional_expectation_def] Definition
⊢ ∀p X s.
conditional_expectation p X s =
@f. real_random_variable f p ∧
∀g. g ∈ s ⇒
integral p (λx. f x * 𝟙 g x) =
integral p (λx. X x * 𝟙 g x)
[conditional_prob_def] Definition
⊢ ∀p e1 e2.
conditional_prob p e1 e2 = conditional_expectation p (𝟙 e1) e2
[distribution_def] Definition
⊢ ∀p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p_space p))
[events_def] Definition
⊢ events = measurable_sets
[expectation_def] Definition
⊢ expectation = integral
[indep_def] Definition
⊢ ∀p a b.
indep p a b ⇔
a ∈ events p ∧ b ∈ events p ∧
prob p (a ∩ b) = prob p a * prob p b
[indep_families_def] Definition
⊢ ∀p q r. indep_families p q r ⇔ ∀s t. s ∈ q ∧ t ∈ r ⇒ indep p s t
[indep_function_def] Definition
⊢ ∀p. indep_function p =
{f |
indep_families p (IMAGE (PREIMAGE (FST ∘ f)) 𝕌(:β -> bool))
(IMAGE (PREIMAGE (SND ∘ f)) (events p))}
[indep_rv_def] Definition
⊢ ∀p X Y s t.
indep_rv p X Y s t ⇔
∀A B.
A ∈ subsets s ∧ B ∈ subsets t ⇒
indep p (PREIMAGE X A) (PREIMAGE Y B)
[joint_distribution3_def] Definition
⊢ ∀p X Y Z.
joint_distribution3 p X Y Z =
(λa. prob p (PREIMAGE (λx. (X x,Y x,Z x)) a ∩ p_space p))
[joint_distribution_def] Definition
⊢ ∀p X Y.
joint_distribution p X Y =
(λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p))
[p_space_def] Definition
⊢ p_space = m_space
[possibly_def] Definition
⊢ ∀p e. possibly p e ⇔ e ∈ events p ∧ prob p e ≠ 0
[prob_def] Definition
⊢ prob = measure
[prob_preserving_def] Definition
⊢ prob_preserving = measure_preserving
[prob_space_def] Definition
⊢ ∀p. prob_space p ⇔ measure_space p ∧ measure p (p_space p) = 1
[probably_def] Definition
⊢ ∀p e. probably p e ⇔ e ∈ events p ∧ prob p e = 1
[random_variable_def] Definition
⊢ ∀X p s.
random_variable X p s ⇔
prob_space p ∧ X ∈ measurable (p_space p,events p) s
[real_random_variable_def] Definition
⊢ ∀X p.
real_random_variable X p ⇔
prob_space p ∧ X ∈ borel_measurable (p_space p,events p)
[rv_conditional_expectation_def] Definition
⊢ ∀p s X Y.
rv_conditional_expectation p s X Y =
conditional_expectation p X
(IMAGE (λa. PREIMAGE Y a ∩ p_space p) (subsets s))
[uniform_distribution_def] Definition
⊢ ∀p X s.
uniform_distribution p X s = (λa. &CARD a / &CARD (space s))
[ABS_1_MINUS_PROB] Theorem
⊢ ∀p s.
prob_space p ∧ s ∈ events p ∧ prob p s ≠ 0 ⇒
abs (1 − prob p s) < 1
[ABS_PROB] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ abs (prob p s) = prob p s
[ADDITIVE_PROB] Theorem
⊢ ∀p. additive p ⇔
∀s t.
s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ⇒
prob p (s ∪ t) = prob p s + prob p t
[BAYES_RULE] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
cond_prob p B A = cond_prob p A B * prob p B / prob p A
[BAYES_RULE_GENERAL_SIGMA] Theorem
⊢ ∀p A B s k.
prob_space p ∧ A ∈ events p ∧ FINITE s ∧
(∀x. x ∈ s ⇒ B x ∈ events p) ∧ k ∈ s ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
BIGUNION (IMAGE B s) = p_space p ⇒
cond_prob p (B k) A =
cond_prob p A (B k) * prob p (B k) /
SIGMA (λi. prob p (B i) * cond_prob p A (B i)) s
[COND_PROB_ADDITIVE] Theorem
⊢ ∀p A B s.
prob_space p ∧ FINITE s ∧ B ∈ events p ∧
(∀x. x ∈ s ⇒ A x ∈ events p) ∧ 0 < prob p B ∧
(∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (A x) (A y)) ∧
BIGUNION (IMAGE A s) = p_space p ⇒
SIGMA (λi. cond_prob p (A i) B) s = 1
[COND_PROB_BOUNDS] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
0 ≤ cond_prob p A B ∧ cond_prob p A B ≤ 1
[COND_PROB_COMPL] Theorem
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ COMPL A ∈ events p ∧ B ∈ events p ∧
0 < prob p B ⇒
cond_prob p (COMPL A) B = 1 − cond_prob p A B
[COND_PROB_DIFF] Theorem
⊢ ∀p A1 A2 B.
prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ⇒
cond_prob p (A1 DIFF A2) B =
cond_prob p A1 B − cond_prob p (A1 ∩ A2) B
[COND_PROB_FINITE_ADDITIVE] Theorem
⊢ ∀p A B n s.
prob_space p ∧ B ∈ events p ∧ A ∈ (count n → events p) ∧
s = BIGUNION (IMAGE A (count n)) ∧
(∀a b. a ≠ b ⇒ DISJOINT (A a) (A b)) ⇒
cond_prob p s B = SIGMA (λi. cond_prob p (A i) B) (count n)
[COND_PROB_INCREASING] Theorem
⊢ ∀A B C p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
cond_prob p (A ∩ B) C ≤ cond_prob p A C
[COND_PROB_INTER_SPLIT] Theorem
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
cond_prob p (A ∩ B) C = cond_prob p A (B ∩ C) * cond_prob p B C
[COND_PROB_INTER_ZERO] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A = 0 ⇒
cond_prob p A B = 0
[COND_PROB_ITSELF] Theorem
⊢ ∀p B.
prob_space p ∧ B ∈ events p ∧ 0 < prob p B ⇒ cond_prob p B B = 1
[COND_PROB_MUL_EQ] Theorem
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
cond_prob p A B * prob p B = cond_prob p B A * prob p A
[COND_PROB_MUL_RULE] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
prob p (A ∩ B) = prob p B * cond_prob p A B
[COND_PROB_POS_IMP_PROB_NZ] Theorem
⊢ ∀A B p.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ 0 < cond_prob p A B ⇒
prob p (A ∩ B) ≠ 0
[COND_PROB_SWAP] Theorem
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
cond_prob p A (B ∩ C) * cond_prob p B C =
cond_prob p B (A ∩ C) * cond_prob p A C
[COND_PROB_ZERO] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B = 0 ⇒
cond_prob p A B = 0
[COND_PROB_ZERO_INTER] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p (A ∩ B) = 0 ⇒
cond_prob p A B = 0
[COUNTABLY_ADDITIVE_PROB] Theorem
⊢ ∀p. countably_additive p ⇔
∀f. f ∈ (𝕌(:num) → events p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
BIGUNION (IMAGE f 𝕌(:num)) ∈ events p ⇒
prob p ∘ f sums prob p (BIGUNION (IMAGE f 𝕌(:num)))
[EVENTS] Theorem
⊢ ∀a b c. events (a,b,c) = b
[EVENTS_ALGEBRA] Theorem
⊢ ∀p. prob_space p ⇒ algebra (p_space p,events p)
[EVENTS_BIGUNION] Theorem
⊢ ∀p f n.
prob_space p ∧ f ∈ (count n → events p) ⇒
BIGUNION (IMAGE f (count n)) ∈ events p
[EVENTS_COMPL] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p DIFF s ∈ events p
[EVENTS_COUNTABLE_INTER] Theorem
⊢ ∀p c.
prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ∧ c ≠ ∅ ⇒
BIGINTER c ∈ events p
[EVENTS_COUNTABLE_UNION] Theorem
⊢ ∀p c.
prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ⇒ BIGUNION c ∈ events p
[EVENTS_DIFF] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s DIFF t ∈ events p
[EVENTS_EMPTY] Theorem
⊢ ∀p. prob_space p ⇒ ∅ ∈ events p
[EVENTS_INTER] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∩ t ∈ events p
[EVENTS_SIGMA_ALGEBRA] Theorem
⊢ ∀p. prob_space p ⇒ sigma_algebra (p_space p,events p)
[EVENTS_SPACE] Theorem
⊢ ∀p. prob_space p ⇒ p_space p ∈ events p
[EVENTS_UNION] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∪ t ∈ events p
[INCREASING_PROB] Theorem
⊢ ∀p. increasing p ⇔
∀s t. s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
[INDEP_EMPTY] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p ∅ s
[INDEP_REFL] Theorem
⊢ ∀p a.
prob_space p ∧ a ∈ events p ⇒
(indep p a a ⇔ prob p a = 0) ∨ prob p a = 1
[INDEP_SPACE] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p (p_space p) s
[INDEP_SYM] Theorem
⊢ ∀p a b. prob_space p ∧ indep p a b ⇒ indep p b a
[INTER_PSPACE] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p ∩ s = s
[POSITIVE_PROB] Theorem
⊢ ∀p. positive p ⇔ prob p ∅ = 0 ∧ ∀s. s ∈ events p ⇒ 0 ≤ prob p s
[PROB] Theorem
⊢ ∀a b c. prob (a,b,c) = c
[PROB_ADDITIVE] Theorem
⊢ ∀p s t u.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧
u = s ∪ t ⇒
prob p u = prob p s + prob p t
[PROB_COMPL] Theorem
⊢ ∀p s.
prob_space p ∧ s ∈ events p ⇒
prob p (p_space p DIFF s) = 1 − prob p s
[PROB_COMPL_LE1] Theorem
⊢ ∀p s r.
prob_space p ∧ s ∈ events p ⇒
(prob p (p_space p DIFF s) ≤ r ⇔ 1 − r ≤ prob p s)
[PROB_COUNTABLY_ADDITIVE] Theorem
⊢ ∀p s f.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
(∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
s = BIGUNION (IMAGE f 𝕌(:num)) ⇒
prob p ∘ f sums prob p s
[PROB_COUNTABLY_SUBADDITIVE] Theorem
⊢ ∀p f.
prob_space p ∧ IMAGE f 𝕌(:num) ⊆ events p ∧ summable (prob p ∘ f) ⇒
prob p (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (prob p ∘ f)
[PROB_COUNTABLY_ZERO] Theorem
⊢ ∀p c.
prob_space p ∧ COUNTABLE c ∧ c ⊆ events p ∧
(∀x. x ∈ c ⇒ prob p x = 0) ⇒
prob p (BIGUNION c) = 0
[PROB_DISCRETE_EVENTS] Theorem
⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧
(∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
∀s. s ⊆ p_space p ⇒ s ∈ events p
[PROB_DISCRETE_EVENTS_COUNTABLE] Theorem
⊢ ∀p. prob_space p ∧ COUNTABLE (p_space p) ∧
(∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
∀s. s ⊆ p_space p ⇒ s ∈ events p
[PROB_EMPTY] Theorem
⊢ ∀p. prob_space p ⇒ prob p ∅ = 0
[PROB_EQUIPROBABLE_FINITE_UNIONS] Theorem
⊢ ∀p s.
prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧
FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ⇒ prob p {x} = prob p {y}) ⇒
prob p s = &CARD s * prob p {CHOICE s}
[PROB_EQ_BIGUNION_IMAGE] Theorem
⊢ ∀p f g.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
g ∈ (𝕌(:num) → events p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
(∀m n. m ≠ n ⇒ DISJOINT (g m) (g n)) ∧
(∀n. prob p (f n) = prob p (g n)) ⇒
prob p (BIGUNION (IMAGE f 𝕌(:num))) =
prob p (BIGUNION (IMAGE g 𝕌(:num)))
[PROB_EQ_COMPL] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧
prob p (p_space p DIFF s) = prob p (p_space p DIFF t) ⇒
prob p s = prob p t
[PROB_FINITELY_ADDITIVE] Theorem
⊢ ∀p s f n.
prob_space p ∧ f ∈ (count n → events p) ∧
(∀a b. a < n ∧ b < n ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
s = BIGUNION (IMAGE f (count n)) ⇒
sum (0,n) (prob p ∘ f) = prob p s
[PROB_FINITE_ADDITIVE] Theorem
⊢ ∀p s f t.
prob_space p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ f x ∈ events p) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
t = BIGUNION (IMAGE f s) ⇒
prob p t = SIGMA (prob p ∘ f) s
[PROB_INCREASING] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒
prob p s ≤ prob p t
[PROB_INCREASING_UNION] Theorem
⊢ ∀p s f.
prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ (∀n. f n ⊆ f (SUC n)) ∧
s = BIGUNION (IMAGE f 𝕌(:num)) ⇒
prob p ∘ f ⟶ prob p s
[PROB_INDEP] Theorem
⊢ ∀p s t u. indep p s t ∧ u = s ∩ t ⇒ prob p u = prob p s * prob p t
[PROB_INTER_SPLIT] Theorem
⊢ ∀p A B C.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
prob p (A ∩ B ∩ C) =
cond_prob p A (B ∩ C) * cond_prob p B C * prob p C
[PROB_INTER_ZERO] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B = 0 ⇒
prob p (A ∩ B) = 0
[PROB_LE_1] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≤ 1
[PROB_ONE_INTER] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ prob p t = 1 ⇒
prob p (s ∩ t) = prob p s
[PROB_POSITIVE] Theorem
⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ 0 ≤ prob p s
[PROB_PRESERVING] Theorem
⊢ ∀p1 p2.
prob_preserving p1 p2 =
{f |
f ∈ measurable (p_space p1,events p1) (p_space p2,events p2) ∧
measure_space p1 ∧ measure_space p2 ∧
∀s. s ∈ events p2 ⇒
prob p1 (PREIMAGE f s ∩ p_space p1) = prob p2 s}
[PROB_PRESERVING_LIFT] Theorem
⊢ ∀p1 p2 a f.
prob_space p1 ∧ prob_space p2 ∧
events p2 = subsets (sigma (m_space p2) a) ∧
f ∈ prob_preserving p1 (m_space p2,a,prob p2) ⇒
f ∈ prob_preserving p1 p2
[PROB_PRESERVING_SUBSET] Theorem
⊢ ∀p1 p2 a.
prob_space p1 ∧ prob_space p2 ∧
events p2 = subsets (sigma (p_space p2) a) ⇒
prob_preserving p1 (p_space p2,a,prob p2) ⊆ prob_preserving p1 p2
[PROB_PRESERVING_UP_LIFT] Theorem
⊢ ∀p1 p2 f.
prob_space p1 ∧ f ∈ prob_preserving (p_space p1,a,prob p1) p2 ∧
sigma_algebra (p_space p1,events p1) ∧ a ⊆ events p1 ⇒
f ∈ prob_preserving p1 p2
[PROB_PRESERVING_UP_SIGMA] Theorem
⊢ ∀p1 p2 a.
prob_space p1 ∧ events p1 = subsets (sigma (p_space p1) a) ⇒
prob_preserving (p_space p1,a,prob p1) p2 ⊆ prob_preserving p1 p2
[PROB_PRESERVING_UP_SUBSET] Theorem
⊢ ∀p1 p2.
prob_space p1 ∧ a ⊆ events p1 ∧
sigma_algebra (p_space p1,events p1) ⇒
prob_preserving (p_space p1,a,prob p1) p2 ⊆ prob_preserving p1 p2
[PROB_REAL_SUM_IMAGE] Theorem
⊢ ∀p s.
prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧
FINITE s ⇒
prob p s = SIGMA (λx. prob p {x}) s
[PROB_REAL_SUM_IMAGE_FN] Theorem
⊢ ∀p f e s.
prob_space p ∧ e ∈ events p ∧ (∀x. x ∈ s ⇒ e ∩ f x ∈ events p) ∧
FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (f x) (f y)) ∧
BIGUNION (IMAGE f s) ∩ p_space p = p_space p ⇒
prob p e = SIGMA (λx. prob p (e ∩ f x)) s
[PROB_REAL_SUM_IMAGE_SPACE] Theorem
⊢ ∀p. prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧
FINITE (p_space p) ⇒
SIGMA (λx. prob p {x}) (p_space p) = 1
[PROB_SPACE] Theorem
⊢ ∀p. prob_space p ⇔
sigma_algebra (p_space p,events p) ∧ positive p ∧
countably_additive p ∧ prob p (p_space p) = 1
[PROB_SPACE_ADDITIVE] Theorem
⊢ ∀p. prob_space p ⇒ additive p
[PROB_SPACE_COUNTABLY_ADDITIVE] Theorem
⊢ ∀p. prob_space p ⇒ countably_additive p
[PROB_SPACE_INCREASING] Theorem
⊢ ∀p. prob_space p ⇒ increasing p
[PROB_SPACE_POSITIVE] Theorem
⊢ ∀p. prob_space p ⇒ positive p
[PROB_SUBADDITIVE] Theorem
⊢ ∀p s t u.
prob_space p ∧ t ∈ events p ∧ u ∈ events p ∧ s = t ∪ u ⇒
prob p s ≤ prob p t + prob p u
[PROB_UNIV] Theorem
⊢ ∀p. prob_space p ⇒ prob p (p_space p) = 1
[PROB_ZERO_INTER] Theorem
⊢ ∀p A B.
prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A = 0 ⇒
prob p (A ∩ B) = 0
[PROB_ZERO_UNION] Theorem
⊢ ∀p s t.
prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ prob p t = 0 ⇒
prob p (s ∪ t) = prob p s
[PSPACE] Theorem
⊢ ∀a b c. p_space (a,b,c) = a
[TOTAL_PROB_SIGMA] Theorem
⊢ ∀p A B s.
prob_space p ∧ A ∈ events p ∧ FINITE s ∧
(∀x. x ∈ s ⇒ B x ∈ events p) ∧
(∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
BIGUNION (IMAGE B s) = p_space p ⇒
prob p A = SIGMA (λi. prob p (B i) * cond_prob p A (B i)) s
[conditional_distribution_le_1] Theorem
⊢ ∀p X Y a b.
prob_space p ∧ events p = POW (p_space p) ⇒
conditional_distribution p X Y a b ≤ 1
[conditional_distribution_pos] Theorem
⊢ ∀p X Y a b.
prob_space p ∧ events p = POW (p_space p) ⇒
0 ≤ conditional_distribution p X Y a b
[distribution_lebesgue_thm1] Theorem
⊢ ∀X p s A.
random_variable X p s ∧ A ∈ subsets s ⇒
distribution p X A = integral p (𝟙 (PREIMAGE X A ∩ p_space p))
[distribution_lebesgue_thm2] Theorem
⊢ ∀X p s A.
random_variable X p s ∧ A ∈ subsets s ⇒
distribution p X A =
integral (space s,subsets s,distribution p X) (𝟙 A)
[distribution_pos] Theorem
⊢ ∀p X a.
prob_space p ∧ events p = POW (p_space p) ⇒
0 ≤ distribution p X a
[distribution_prob_space] Theorem
⊢ ∀p X s.
random_variable X p s ⇒
prob_space (space s,subsets s,distribution p X)
[distribution_x_eq_1_imp_distribution_y_eq_0] Theorem
⊢ ∀X p x.
random_variable X p
(IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
distribution p X {x} = 1 ⇒
∀y. y ≠ x ⇒ distribution p X {y} = 0
[finite_expectation] Theorem
⊢ ∀p X.
FINITE (p_space p) ∧ real_random_variable X p ⇒
expectation p X =
SIGMA (λr. r * distribution p X {r}) (IMAGE X (p_space p))
[finite_expectation1] Theorem
⊢ ∀p X.
FINITE (p_space p) ∧ real_random_variable X p ⇒
expectation p X =
SIGMA (λr. r * prob p (PREIMAGE X {r} ∩ p_space p))
(IMAGE X (p_space p))
[finite_marginal_product_space_POW] Theorem
⊢ ∀p X Y.
POW (p_space p) = events p ∧
random_variable X p
(IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
random_variable Y p
(IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) ∧
FINITE (p_space p) ⇒
measure_space
(IMAGE X (p_space p) × IMAGE Y (p_space p),
POW (IMAGE X (p_space p) × IMAGE Y (p_space p)),
(λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p)))
[finite_marginal_product_space_POW2] Theorem
⊢ ∀p s1 s2 X Y.
POW (p_space p) = events p ∧ random_variable X p (s1,POW s1) ∧
random_variable Y p (s2,POW s2) ∧ FINITE (p_space p) ∧
FINITE s1 ∧ FINITE s2 ⇒
measure_space (s1 × s2,POW (s1 × s2),joint_distribution p X Y)
[finite_marginal_product_space_POW3] Theorem
⊢ ∀p s1 s2 s3 X Y Z.
POW (p_space p) = events p ∧ random_variable X p (s1,POW s1) ∧
random_variable Y p (s2,POW s2) ∧
random_variable Z p (s3,POW s3) ∧ FINITE (p_space p) ∧
FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
measure_space
(s1 × (s2 × s3),POW (s1 × (s2 × s3)),
joint_distribution3 p X Y Z)
[joint_conditional] Theorem
⊢ ∀p X Y a b.
prob_space p ∧ events p = POW (p_space p) ⇒
joint_distribution p X Y (a × b) =
conditional_distribution p Y X b a * distribution p X a
[joint_distribution_le] Theorem
⊢ ∀p X Y a b.
prob_space p ∧ events p = POW (p_space p) ⇒
joint_distribution p X Y (a × b) ≤ distribution p X a
[joint_distribution_le2] Theorem
⊢ ∀p X Y a b.
prob_space p ∧ events p = POW (p_space p) ⇒
joint_distribution p X Y (a × b) ≤ distribution p Y b
[joint_distribution_le_1] Theorem
⊢ ∀p X Y a.
prob_space p ∧ events p = POW (p_space p) ⇒
joint_distribution p X Y a ≤ 1
[joint_distribution_pos] Theorem
⊢ ∀p X Y a.
prob_space p ∧ events p = POW (p_space p) ⇒
0 ≤ joint_distribution p X Y a
[joint_distribution_sum_mul1] Theorem
⊢ ∀p X Y f.
prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
SIGMA (λ(x,y). joint_distribution p X Y {(x,y)} * f x)
(IMAGE X (p_space p) × IMAGE Y (p_space p)) =
SIGMA (λx. distribution p X {x} * f x) (IMAGE X (p_space p))
[joint_distribution_sums_1] Theorem
⊢ ∀p X Y.
prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
SIGMA (λ(x,y). joint_distribution p X Y {(x,y)})
(IMAGE X (p_space p) × IMAGE Y (p_space p)) =
1
[joint_distribution_sym] Theorem
⊢ ∀p X Y a b.
prob_space p ⇒
joint_distribution p X Y (a × b) =
joint_distribution p Y X (b × a)
[marginal_distribution1] Theorem
⊢ ∀p X Y a.
prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
distribution p X a =
SIGMA (λx. joint_distribution p X Y (a × {x}))
(IMAGE Y (p_space p))
[marginal_distribution2] Theorem
⊢ ∀p X Y b.
prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
distribution p Y b =
SIGMA (λx. joint_distribution p X Y ({x} × b))
(IMAGE X (p_space p))
[marginal_joint_zero] Theorem
⊢ ∀p X Y s t.
prob_space p ∧ events p = POW (p_space p) ∧
(distribution p X s = 0 ∨ distribution p Y t = 0) ⇒
joint_distribution p X Y (s × t) = 0
[marginal_joint_zero3] Theorem
⊢ ∀p X Y Z s t u.
prob_space p ∧ events p = POW (p_space p) ∧
(distribution p X s = 0 ∨ distribution p Y t = 0 ∨
distribution p Z u = 0) ⇒
joint_distribution3 p X Y Z (s × (t × u)) = 0
[prob_x_eq_1_imp_prob_y_eq_0] Theorem
⊢ ∀p x.
prob_space p ∧ {x} ∈ events p ∧ prob p {x} = 1 ⇒
∀y. {y} ∈ events p ∧ y ≠ x ⇒ prob p {y} = 0
[uniform_distribution_prob_space] Theorem
⊢ ∀X p s.
FINITE (p_space p) ∧ FINITE (space s) ∧ random_variable X p s ⇒
prob_space (space s,subsets s,uniform_distribution p X s)
*)
end
HOL 4, Kananaskis-14