Structure real_probabilityTheory


Source File Identifier index Theory binding index

signature real_probabilityTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val cond_prob_def : thm
    val conditional_distribution_def : thm
    val conditional_expectation_def : thm
    val conditional_prob_def : thm
    val distribution_def : thm
    val events_def : thm
    val expectation_def : thm
    val indep_def : thm
    val indep_families_def : thm
    val indep_function_def : thm
    val indep_rv_def : thm
    val joint_distribution3_def : thm
    val joint_distribution_def : thm
    val p_space_def : thm
    val possibly_def : thm
    val prob_def : thm
    val prob_preserving_def : thm
    val prob_space_def : thm
    val probably_def : thm
    val random_variable_def : thm
    val real_random_variable_def : thm
    val rv_conditional_expectation_def : thm
    val uniform_distribution_def : thm
  
  (*  Theorems  *)
    val ABS_1_MINUS_PROB : thm
    val ABS_PROB : thm
    val ADDITIVE_PROB : thm
    val BAYES_RULE : thm
    val BAYES_RULE_GENERAL_SIGMA : thm
    val COND_PROB_ADDITIVE : thm
    val COND_PROB_BOUNDS : thm
    val COND_PROB_COMPL : thm
    val COND_PROB_DIFF : thm
    val COND_PROB_FINITE_ADDITIVE : thm
    val COND_PROB_INCREASING : thm
    val COND_PROB_INTER_SPLIT : thm
    val COND_PROB_INTER_ZERO : thm
    val COND_PROB_ITSELF : thm
    val COND_PROB_MUL_EQ : thm
    val COND_PROB_MUL_RULE : thm
    val COND_PROB_POS_IMP_PROB_NZ : thm
    val COND_PROB_SWAP : thm
    val COND_PROB_ZERO : thm
    val COND_PROB_ZERO_INTER : thm
    val COUNTABLY_ADDITIVE_PROB : thm
    val EVENTS : thm
    val EVENTS_ALGEBRA : thm
    val EVENTS_BIGUNION : thm
    val EVENTS_COMPL : thm
    val EVENTS_COUNTABLE_INTER : thm
    val EVENTS_COUNTABLE_UNION : thm
    val EVENTS_DIFF : thm
    val EVENTS_EMPTY : thm
    val EVENTS_INTER : thm
    val EVENTS_SIGMA_ALGEBRA : thm
    val EVENTS_SPACE : thm
    val EVENTS_UNION : thm
    val INCREASING_PROB : thm
    val INDEP_EMPTY : thm
    val INDEP_REFL : thm
    val INDEP_SPACE : thm
    val INDEP_SYM : thm
    val INTER_PSPACE : thm
    val POSITIVE_PROB : thm
    val PROB : thm
    val PROB_ADDITIVE : thm
    val PROB_COMPL : thm
    val PROB_COMPL_LE1 : thm
    val PROB_COUNTABLY_ADDITIVE : thm
    val PROB_COUNTABLY_SUBADDITIVE : thm
    val PROB_COUNTABLY_ZERO : thm
    val PROB_DISCRETE_EVENTS : thm
    val PROB_DISCRETE_EVENTS_COUNTABLE : thm
    val PROB_EMPTY : thm
    val PROB_EQUIPROBABLE_FINITE_UNIONS : thm
    val PROB_EQ_BIGUNION_IMAGE : thm
    val PROB_EQ_COMPL : thm
    val PROB_FINITELY_ADDITIVE : thm
    val PROB_FINITE_ADDITIVE : thm
    val PROB_INCREASING : thm
    val PROB_INCREASING_UNION : thm
    val PROB_INDEP : thm
    val PROB_INTER_SPLIT : thm
    val PROB_INTER_ZERO : thm
    val PROB_LE_1 : thm
    val PROB_ONE_INTER : thm
    val PROB_POSITIVE : thm
    val PROB_PRESERVING : thm
    val PROB_PRESERVING_LIFT : thm
    val PROB_PRESERVING_SUBSET : thm
    val PROB_PRESERVING_UP_LIFT : thm
    val PROB_PRESERVING_UP_SIGMA : thm
    val PROB_PRESERVING_UP_SUBSET : thm
    val PROB_REAL_SUM_IMAGE : thm
    val PROB_REAL_SUM_IMAGE_FN : thm
    val PROB_REAL_SUM_IMAGE_SPACE : thm
    val PROB_SPACE : thm
    val PROB_SPACE_ADDITIVE : thm
    val PROB_SPACE_COUNTABLY_ADDITIVE : thm
    val PROB_SPACE_INCREASING : thm
    val PROB_SPACE_POSITIVE : thm
    val PROB_SUBADDITIVE : thm
    val PROB_UNIV : thm
    val PROB_ZERO_INTER : thm
    val PROB_ZERO_UNION : thm
    val PSPACE : thm
    val TOTAL_PROB_SIGMA : thm
    val conditional_distribution_le_1 : thm
    val conditional_distribution_pos : thm
    val distribution_lebesgue_thm1 : thm
    val distribution_lebesgue_thm2 : thm
    val distribution_pos : thm
    val distribution_prob_space : thm
    val distribution_x_eq_1_imp_distribution_y_eq_0 : thm
    val finite_expectation : thm
    val finite_expectation1 : thm
    val finite_marginal_product_space_POW : thm
    val finite_marginal_product_space_POW2 : thm
    val finite_marginal_product_space_POW3 : thm
    val joint_conditional : thm
    val joint_distribution_le : thm
    val joint_distribution_le2 : thm
    val joint_distribution_le_1 : thm
    val joint_distribution_pos : thm
    val joint_distribution_sum_mul1 : thm
    val joint_distribution_sums_1 : thm
    val joint_distribution_sym : thm
    val marginal_distribution1 : thm
    val marginal_distribution2 : thm
    val marginal_joint_zero : thm
    val marginal_joint_zero3 : thm
    val prob_x_eq_1_imp_prob_y_eq_0 : thm
    val uniform_distribution_prob_space : thm
  
  val real_probability_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [real_lebesgue] Parent theory of "real_probability"
   
   [cond_prob_def]  Definition
      
      ⊢ ∀p e1 e2. cond_prob p e1 e2 = prob p (e1 ∩ e2) / prob p e2
   
   [conditional_distribution_def]  Definition
      
      ⊢ ∀p X Y a b.
          conditional_distribution p X Y a b =
          joint_distribution p X Y (a × b) / distribution p Y b
   
   [conditional_expectation_def]  Definition
      
      ⊢ ∀p X s.
          conditional_expectation p X s =
          @f. real_random_variable f p ∧
              ∀g. g ∈ s ⇒
                  integral p (λx. f x * 𝟙 g x) =
                  integral p (λx. X x * 𝟙 g x)
   
   [conditional_prob_def]  Definition
      
      ⊢ ∀p e1 e2.
          conditional_prob p e1 e2 = conditional_expectation p (𝟙 e1) e2
   
   [distribution_def]  Definition
      
      ⊢ ∀p X. distribution p X = (λs. prob p (PREIMAGE X s ∩ p_space p))
   
   [events_def]  Definition
      
      ⊢ events = measurable_sets
   
   [expectation_def]  Definition
      
      ⊢ expectation = integral
   
   [indep_def]  Definition
      
      ⊢ ∀p a b.
          indep p a b ⇔
          a ∈ events p ∧ b ∈ events p ∧
          prob p (a ∩ b) = prob p a * prob p b
   
   [indep_families_def]  Definition
      
      ⊢ ∀p q r. indep_families p q r ⇔ ∀s t. s ∈ q ∧ t ∈ r ⇒ indep p s t
   
   [indep_function_def]  Definition
      
      ⊢ ∀p. indep_function p =
            {f |
             indep_families p (IMAGE (PREIMAGE (FST ∘ f)) 𝕌(:β -> bool))
               (IMAGE (PREIMAGE (SND ∘ f)) (events p))}
   
   [indep_rv_def]  Definition
      
      ⊢ ∀p X Y s t.
          indep_rv p X Y s t ⇔
          ∀A B.
            A ∈ subsets s ∧ B ∈ subsets t ⇒
            indep p (PREIMAGE X A) (PREIMAGE Y B)
   
   [joint_distribution3_def]  Definition
      
      ⊢ ∀p X Y Z.
          joint_distribution3 p X Y Z =
          (λa. prob p (PREIMAGE (λx. (X x,Y x,Z x)) a ∩ p_space p))
   
   [joint_distribution_def]  Definition
      
      ⊢ ∀p X Y.
          joint_distribution p X Y =
          (λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p))
   
   [p_space_def]  Definition
      
      ⊢ p_space = m_space
   
   [possibly_def]  Definition
      
      ⊢ ∀p e. possibly p e ⇔ e ∈ events p ∧ prob p e ≠ 0
   
   [prob_def]  Definition
      
      ⊢ prob = measure
   
   [prob_preserving_def]  Definition
      
      ⊢ prob_preserving = measure_preserving
   
   [prob_space_def]  Definition
      
      ⊢ ∀p. prob_space p ⇔ measure_space p ∧ measure p (p_space p) = 1
   
   [probably_def]  Definition
      
      ⊢ ∀p e. probably p e ⇔ e ∈ events p ∧ prob p e = 1
   
   [random_variable_def]  Definition
      
      ⊢ ∀X p s.
          random_variable X p s ⇔
          prob_space p ∧ X ∈ measurable (p_space p,events p) s
   
   [real_random_variable_def]  Definition
      
      ⊢ ∀X p.
          real_random_variable X p ⇔
          prob_space p ∧ X ∈ borel_measurable (p_space p,events p)
   
   [rv_conditional_expectation_def]  Definition
      
      ⊢ ∀p s X Y.
          rv_conditional_expectation p s X Y =
          conditional_expectation p X
            (IMAGE (λa. PREIMAGE Y a ∩ p_space p) (subsets s))
   
   [uniform_distribution_def]  Definition
      
      ⊢ ∀p X s.
          uniform_distribution p X s = (λa. &CARD a / &CARD (space s))
   
   [ABS_1_MINUS_PROB]  Theorem
      
      ⊢ ∀p s.
          prob_space p ∧ s ∈ events p ∧ prob p s ≠ 0 ⇒
          abs (1 − prob p s) < 1
   
   [ABS_PROB]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ abs (prob p s) = prob p s
   
   [ADDITIVE_PROB]  Theorem
      
      ⊢ ∀p. additive p ⇔
            ∀s t.
              s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ⇒
              prob p (s ∪ t) = prob p s + prob p t
   
   [BAYES_RULE]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
          cond_prob p B A = cond_prob p A B * prob p B / prob p A
   
   [BAYES_RULE_GENERAL_SIGMA]  Theorem
      
      ⊢ ∀p A B s k.
          prob_space p ∧ A ∈ events p ∧ FINITE s ∧
          (∀x. x ∈ s ⇒ B x ∈ events p) ∧ k ∈ s ∧
          (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
          BIGUNION (IMAGE B s) = p_space p ⇒
          cond_prob p (B k) A =
          cond_prob p A (B k) * prob p (B k) /
          SIGMA (λi. prob p (B i) * cond_prob p A (B i)) s
   
   [COND_PROB_ADDITIVE]  Theorem
      
      ⊢ ∀p A B s.
          prob_space p ∧ FINITE s ∧ B ∈ events p ∧
          (∀x. x ∈ s ⇒ A x ∈ events p) ∧ 0 < prob p B ∧
          (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (A x) (A y)) ∧
          BIGUNION (IMAGE A s) = p_space p ⇒
          SIGMA (λi. cond_prob p (A i) B) s = 1
   
   [COND_PROB_BOUNDS]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
          0 ≤ cond_prob p A B ∧ cond_prob p A B ≤ 1
   
   [COND_PROB_COMPL]  Theorem
      
      ⊢ ∀A B p.
          prob_space p ∧ A ∈ events p ∧ COMPL A ∈ events p ∧ B ∈ events p ∧
          0 < prob p B ⇒
          cond_prob p (COMPL A) B = 1 − cond_prob p A B
   
   [COND_PROB_DIFF]  Theorem
      
      ⊢ ∀p A1 A2 B.
          prob_space p ∧ A1 ∈ events p ∧ A2 ∈ events p ∧ B ∈ events p ⇒
          cond_prob p (A1 DIFF A2) B =
          cond_prob p A1 B − cond_prob p (A1 ∩ A2) B
   
   [COND_PROB_FINITE_ADDITIVE]  Theorem
      
      ⊢ ∀p A B n s.
          prob_space p ∧ B ∈ events p ∧ A ∈ (count n → events p) ∧
          s = BIGUNION (IMAGE A (count n)) ∧
          (∀a b. a ≠ b ⇒ DISJOINT (A a) (A b)) ⇒
          cond_prob p s B = SIGMA (λi. cond_prob p (A i) B) (count n)
   
   [COND_PROB_INCREASING]  Theorem
      
      ⊢ ∀A B C p.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
          cond_prob p (A ∩ B) C ≤ cond_prob p A C
   
   [COND_PROB_INTER_SPLIT]  Theorem
      
      ⊢ ∀p A B C.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
          cond_prob p (A ∩ B) C = cond_prob p A (B ∩ C) * cond_prob p B C
   
   [COND_PROB_INTER_ZERO]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A = 0 ⇒
          cond_prob p A B = 0
   
   [COND_PROB_ITSELF]  Theorem
      
      ⊢ ∀p B.
          prob_space p ∧ B ∈ events p ∧ 0 < prob p B ⇒ cond_prob p B B = 1
   
   [COND_PROB_MUL_EQ]  Theorem
      
      ⊢ ∀A B p.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
          cond_prob p A B * prob p B = cond_prob p B A * prob p A
   
   [COND_PROB_MUL_RULE]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ⇒
          prob p (A ∩ B) = prob p B * cond_prob p A B
   
   [COND_PROB_POS_IMP_PROB_NZ]  Theorem
      
      ⊢ ∀A B p.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ 0 < cond_prob p A B ⇒
          prob p (A ∩ B) ≠ 0
   
   [COND_PROB_SWAP]  Theorem
      
      ⊢ ∀p A B C.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
          cond_prob p A (B ∩ C) * cond_prob p B C =
          cond_prob p B (A ∩ C) * cond_prob p A C
   
   [COND_PROB_ZERO]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B = 0 ⇒
          cond_prob p A B = 0
   
   [COND_PROB_ZERO_INTER]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p (A ∩ B) = 0 ⇒
          cond_prob p A B = 0
   
   [COUNTABLY_ADDITIVE_PROB]  Theorem
      
      ⊢ ∀p. countably_additive p ⇔
            ∀f. f ∈ (𝕌(:num) → events p) ∧
                (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
                BIGUNION (IMAGE f 𝕌(:num)) ∈ events p ⇒
                prob p ∘ f sums prob p (BIGUNION (IMAGE f 𝕌(:num)))
   
   [EVENTS]  Theorem
      
      ⊢ ∀a b c. events (a,b,c) = b
   
   [EVENTS_ALGEBRA]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ algebra (p_space p,events p)
   
   [EVENTS_BIGUNION]  Theorem
      
      ⊢ ∀p f n.
          prob_space p ∧ f ∈ (count n → events p) ⇒
          BIGUNION (IMAGE f (count n)) ∈ events p
   
   [EVENTS_COMPL]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p DIFF s ∈ events p
   
   [EVENTS_COUNTABLE_INTER]  Theorem
      
      ⊢ ∀p c.
          prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ∧ c ≠ ∅ ⇒
          BIGINTER c ∈ events p
   
   [EVENTS_COUNTABLE_UNION]  Theorem
      
      ⊢ ∀p c.
          prob_space p ∧ c ⊆ events p ∧ COUNTABLE c ⇒ BIGUNION c ∈ events p
   
   [EVENTS_DIFF]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s DIFF t ∈ events p
   
   [EVENTS_EMPTY]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ ∅ ∈ events p
   
   [EVENTS_INTER]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∩ t ∈ events p
   
   [EVENTS_SIGMA_ALGEBRA]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ sigma_algebra (p_space p,events p)
   
   [EVENTS_SPACE]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ p_space p ∈ events p
   
   [EVENTS_UNION]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ⇒ s ∪ t ∈ events p
   
   [INCREASING_PROB]  Theorem
      
      ⊢ ∀p. increasing p ⇔
            ∀s t. s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒ prob p s ≤ prob p t
   
   [INDEP_EMPTY]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p ∅ s
   
   [INDEP_REFL]  Theorem
      
      ⊢ ∀p a.
          prob_space p ∧ a ∈ events p ⇒
          (indep p a a ⇔ prob p a = 0) ∨ prob p a = 1
   
   [INDEP_SPACE]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ indep p (p_space p) s
   
   [INDEP_SYM]  Theorem
      
      ⊢ ∀p a b. prob_space p ∧ indep p a b ⇒ indep p b a
   
   [INTER_PSPACE]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ p_space p ∩ s = s
   
   [POSITIVE_PROB]  Theorem
      
      ⊢ ∀p. positive p ⇔ prob p ∅ = 0 ∧ ∀s. s ∈ events p ⇒ 0 ≤ prob p s
   
   [PROB]  Theorem
      
      ⊢ ∀a b c. prob (a,b,c) = c
   
   [PROB_ADDITIVE]  Theorem
      
      ⊢ ∀p s t u.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ DISJOINT s t ∧
          u = s ∪ t ⇒
          prob p u = prob p s + prob p t
   
   [PROB_COMPL]  Theorem
      
      ⊢ ∀p s.
          prob_space p ∧ s ∈ events p ⇒
          prob p (p_space p DIFF s) = 1 − prob p s
   
   [PROB_COMPL_LE1]  Theorem
      
      ⊢ ∀p s r.
          prob_space p ∧ s ∈ events p ⇒
          (prob p (p_space p DIFF s) ≤ r ⇔ 1 − r ≤ prob p s)
   
   [PROB_COUNTABLY_ADDITIVE]  Theorem
      
      ⊢ ∀p s f.
          prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
          (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
          s = BIGUNION (IMAGE f 𝕌(:num)) ⇒
          prob p ∘ f sums prob p s
   
   [PROB_COUNTABLY_SUBADDITIVE]  Theorem
      
      ⊢ ∀p f.
          prob_space p ∧ IMAGE f 𝕌(:num) ⊆ events p ∧ summable (prob p ∘ f) ⇒
          prob p (BIGUNION (IMAGE f 𝕌(:num))) ≤ suminf (prob p ∘ f)
   
   [PROB_COUNTABLY_ZERO]  Theorem
      
      ⊢ ∀p c.
          prob_space p ∧ COUNTABLE c ∧ c ⊆ events p ∧
          (∀x. x ∈ c ⇒ prob p x = 0) ⇒
          prob p (BIGUNION c) = 0
   
   [PROB_DISCRETE_EVENTS]  Theorem
      
      ⊢ ∀p. prob_space p ∧ FINITE (p_space p) ∧
            (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
            ∀s. s ⊆ p_space p ⇒ s ∈ events p
   
   [PROB_DISCRETE_EVENTS_COUNTABLE]  Theorem
      
      ⊢ ∀p. prob_space p ∧ COUNTABLE (p_space p) ∧
            (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ⇒
            ∀s. s ⊆ p_space p ⇒ s ∈ events p
   
   [PROB_EMPTY]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ prob p ∅ = 0
   
   [PROB_EQUIPROBABLE_FINITE_UNIONS]  Theorem
      
      ⊢ ∀p s.
          prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧
          FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ⇒ prob p {x} = prob p {y}) ⇒
          prob p s = &CARD s * prob p {CHOICE s}
   
   [PROB_EQ_BIGUNION_IMAGE]  Theorem
      
      ⊢ ∀p f g.
          prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧
          g ∈ (𝕌(:num) → events p) ∧ (∀m n. m ≠ n ⇒ DISJOINT (f m) (f n)) ∧
          (∀m n. m ≠ n ⇒ DISJOINT (g m) (g n)) ∧
          (∀n. prob p (f n) = prob p (g n)) ⇒
          prob p (BIGUNION (IMAGE f 𝕌(:num))) =
          prob p (BIGUNION (IMAGE g 𝕌(:num)))
   
   [PROB_EQ_COMPL]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧
          prob p (p_space p DIFF s) = prob p (p_space p DIFF t) ⇒
          prob p s = prob p t
   
   [PROB_FINITELY_ADDITIVE]  Theorem
      
      ⊢ ∀p s f n.
          prob_space p ∧ f ∈ (count n → events p) ∧
          (∀a b. a < n ∧ b < n ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
          s = BIGUNION (IMAGE f (count n)) ⇒
          sum (0,n) (prob p ∘ f) = prob p s
   
   [PROB_FINITE_ADDITIVE]  Theorem
      
      ⊢ ∀p s f t.
          prob_space p ∧ FINITE s ∧ (∀x. x ∈ s ⇒ f x ∈ events p) ∧
          (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (f a) (f b)) ∧
          t = BIGUNION (IMAGE f s) ⇒
          prob p t = SIGMA (prob p ∘ f) s
   
   [PROB_INCREASING]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ s ⊆ t ⇒
          prob p s ≤ prob p t
   
   [PROB_INCREASING_UNION]  Theorem
      
      ⊢ ∀p s f.
          prob_space p ∧ f ∈ (𝕌(:num) → events p) ∧ (∀n. f n ⊆ f (SUC n)) ∧
          s = BIGUNION (IMAGE f 𝕌(:num)) ⇒
          prob p ∘ f ⟶ prob p s
   
   [PROB_INDEP]  Theorem
      
      ⊢ ∀p s t u. indep p s t ∧ u = s ∩ t ⇒ prob p u = prob p s * prob p t
   
   [PROB_INTER_SPLIT]  Theorem
      
      ⊢ ∀p A B C.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ C ∈ events p ⇒
          prob p (A ∩ B ∩ C) =
          cond_prob p A (B ∩ C) * cond_prob p B C * prob p C
   
   [PROB_INTER_ZERO]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p B = 0 ⇒
          prob p (A ∩ B) = 0
   
   [PROB_LE_1]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ prob p s ≤ 1
   
   [PROB_ONE_INTER]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ prob p t = 1 ⇒
          prob p (s ∩ t) = prob p s
   
   [PROB_POSITIVE]  Theorem
      
      ⊢ ∀p s. prob_space p ∧ s ∈ events p ⇒ 0 ≤ prob p s
   
   [PROB_PRESERVING]  Theorem
      
      ⊢ ∀p1 p2.
          prob_preserving p1 p2 =
          {f |
           f ∈ measurable (p_space p1,events p1) (p_space p2,events p2) ∧
           measure_space p1 ∧ measure_space p2 ∧
           ∀s. s ∈ events p2 ⇒
               prob p1 (PREIMAGE f s ∩ p_space p1) = prob p2 s}
   
   [PROB_PRESERVING_LIFT]  Theorem
      
      ⊢ ∀p1 p2 a f.
          prob_space p1 ∧ prob_space p2 ∧
          events p2 = subsets (sigma (m_space p2) a) ∧
          f ∈ prob_preserving p1 (m_space p2,a,prob p2) ⇒
          f ∈ prob_preserving p1 p2
   
   [PROB_PRESERVING_SUBSET]  Theorem
      
      ⊢ ∀p1 p2 a.
          prob_space p1 ∧ prob_space p2 ∧
          events p2 = subsets (sigma (p_space p2) a) ⇒
          prob_preserving p1 (p_space p2,a,prob p2) ⊆ prob_preserving p1 p2
   
   [PROB_PRESERVING_UP_LIFT]  Theorem
      
      ⊢ ∀p1 p2 f.
          prob_space p1 ∧ f ∈ prob_preserving (p_space p1,a,prob p1) p2 ∧
          sigma_algebra (p_space p1,events p1) ∧ a ⊆ events p1 ⇒
          f ∈ prob_preserving p1 p2
   
   [PROB_PRESERVING_UP_SIGMA]  Theorem
      
      ⊢ ∀p1 p2 a.
          prob_space p1 ∧ events p1 = subsets (sigma (p_space p1) a) ⇒
          prob_preserving (p_space p1,a,prob p1) p2 ⊆ prob_preserving p1 p2
   
   [PROB_PRESERVING_UP_SUBSET]  Theorem
      
      ⊢ ∀p1 p2.
          prob_space p1 ∧ a ⊆ events p1 ∧
          sigma_algebra (p_space p1,events p1) ⇒
          prob_preserving (p_space p1,a,prob p1) p2 ⊆ prob_preserving p1 p2
   
   [PROB_REAL_SUM_IMAGE]  Theorem
      
      ⊢ ∀p s.
          prob_space p ∧ s ∈ events p ∧ (∀x. x ∈ s ⇒ {x} ∈ events p) ∧
          FINITE s ⇒
          prob p s = SIGMA (λx. prob p {x}) s
   
   [PROB_REAL_SUM_IMAGE_FN]  Theorem
      
      ⊢ ∀p f e s.
          prob_space p ∧ e ∈ events p ∧ (∀x. x ∈ s ⇒ e ∩ f x ∈ events p) ∧
          FINITE s ∧ (∀x y. x ∈ s ∧ y ∈ s ∧ x ≠ y ⇒ DISJOINT (f x) (f y)) ∧
          BIGUNION (IMAGE f s) ∩ p_space p = p_space p ⇒
          prob p e = SIGMA (λx. prob p (e ∩ f x)) s
   
   [PROB_REAL_SUM_IMAGE_SPACE]  Theorem
      
      ⊢ ∀p. prob_space p ∧ (∀x. x ∈ p_space p ⇒ {x} ∈ events p) ∧
            FINITE (p_space p) ⇒
            SIGMA (λx. prob p {x}) (p_space p) = 1
   
   [PROB_SPACE]  Theorem
      
      ⊢ ∀p. prob_space p ⇔
            sigma_algebra (p_space p,events p) ∧ positive p ∧
            countably_additive p ∧ prob p (p_space p) = 1
   
   [PROB_SPACE_ADDITIVE]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ additive p
   
   [PROB_SPACE_COUNTABLY_ADDITIVE]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ countably_additive p
   
   [PROB_SPACE_INCREASING]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ increasing p
   
   [PROB_SPACE_POSITIVE]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ positive p
   
   [PROB_SUBADDITIVE]  Theorem
      
      ⊢ ∀p s t u.
          prob_space p ∧ t ∈ events p ∧ u ∈ events p ∧ s = t ∪ u ⇒
          prob p s ≤ prob p t + prob p u
   
   [PROB_UNIV]  Theorem
      
      ⊢ ∀p. prob_space p ⇒ prob p (p_space p) = 1
   
   [PROB_ZERO_INTER]  Theorem
      
      ⊢ ∀p A B.
          prob_space p ∧ A ∈ events p ∧ B ∈ events p ∧ prob p A = 0 ⇒
          prob p (A ∩ B) = 0
   
   [PROB_ZERO_UNION]  Theorem
      
      ⊢ ∀p s t.
          prob_space p ∧ s ∈ events p ∧ t ∈ events p ∧ prob p t = 0 ⇒
          prob p (s ∪ t) = prob p s
   
   [PSPACE]  Theorem
      
      ⊢ ∀a b c. p_space (a,b,c) = a
   
   [TOTAL_PROB_SIGMA]  Theorem
      
      ⊢ ∀p A B s.
          prob_space p ∧ A ∈ events p ∧ FINITE s ∧
          (∀x. x ∈ s ⇒ B x ∈ events p) ∧
          (∀a b. a ∈ s ∧ b ∈ s ∧ a ≠ b ⇒ DISJOINT (B a) (B b)) ∧
          BIGUNION (IMAGE B s) = p_space p ⇒
          prob p A = SIGMA (λi. prob p (B i) * cond_prob p A (B i)) s
   
   [conditional_distribution_le_1]  Theorem
      
      ⊢ ∀p X Y a b.
          prob_space p ∧ events p = POW (p_space p) ⇒
          conditional_distribution p X Y a b ≤ 1
   
   [conditional_distribution_pos]  Theorem
      
      ⊢ ∀p X Y a b.
          prob_space p ∧ events p = POW (p_space p) ⇒
          0 ≤ conditional_distribution p X Y a b
   
   [distribution_lebesgue_thm1]  Theorem
      
      ⊢ ∀X p s A.
          random_variable X p s ∧ A ∈ subsets s ⇒
          distribution p X A = integral p (𝟙 (PREIMAGE X A ∩ p_space p))
   
   [distribution_lebesgue_thm2]  Theorem
      
      ⊢ ∀X p s A.
          random_variable X p s ∧ A ∈ subsets s ⇒
          distribution p X A =
          integral (space s,subsets s,distribution p X) (𝟙 A)
   
   [distribution_pos]  Theorem
      
      ⊢ ∀p X a.
          prob_space p ∧ events p = POW (p_space p) ⇒
          0 ≤ distribution p X a
   
   [distribution_prob_space]  Theorem
      
      ⊢ ∀p X s.
          random_variable X p s ⇒
          prob_space (space s,subsets s,distribution p X)
   
   [distribution_x_eq_1_imp_distribution_y_eq_0]  Theorem
      
      ⊢ ∀X p x.
          random_variable X p
            (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
          distribution p X {x} = 1 ⇒
          ∀y. y ≠ x ⇒ distribution p X {y} = 0
   
   [finite_expectation]  Theorem
      
      ⊢ ∀p X.
          FINITE (p_space p) ∧ real_random_variable X p ⇒
          expectation p X =
          SIGMA (λr. r * distribution p X {r}) (IMAGE X (p_space p))
   
   [finite_expectation1]  Theorem
      
      ⊢ ∀p X.
          FINITE (p_space p) ∧ real_random_variable X p ⇒
          expectation p X =
          SIGMA (λr. r * prob p (PREIMAGE X {r} ∩ p_space p))
            (IMAGE X (p_space p))
   
   [finite_marginal_product_space_POW]  Theorem
      
      ⊢ ∀p X Y.
          POW (p_space p) = events p ∧
          random_variable X p
            (IMAGE X (p_space p),POW (IMAGE X (p_space p))) ∧
          random_variable Y p
            (IMAGE Y (p_space p),POW (IMAGE Y (p_space p))) ∧
          FINITE (p_space p) ⇒
          measure_space
            (IMAGE X (p_space p) × IMAGE Y (p_space p),
             POW (IMAGE X (p_space p) × IMAGE Y (p_space p)),
             (λa. prob p (PREIMAGE (λx. (X x,Y x)) a ∩ p_space p)))
   
   [finite_marginal_product_space_POW2]  Theorem
      
      ⊢ ∀p s1 s2 X Y.
          POW (p_space p) = events p ∧ random_variable X p (s1,POW s1) ∧
          random_variable Y p (s2,POW s2) ∧ FINITE (p_space p) ∧
          FINITE s1 ∧ FINITE s2 ⇒
          measure_space (s1 × s2,POW (s1 × s2),joint_distribution p X Y)
   
   [finite_marginal_product_space_POW3]  Theorem
      
      ⊢ ∀p s1 s2 s3 X Y Z.
          POW (p_space p) = events p ∧ random_variable X p (s1,POW s1) ∧
          random_variable Y p (s2,POW s2) ∧
          random_variable Z p (s3,POW s3) ∧ FINITE (p_space p) ∧
          FINITE s1 ∧ FINITE s2 ∧ FINITE s3 ⇒
          measure_space
            (s1 × (s2 × s3),POW (s1 × (s2 × s3)),
             joint_distribution3 p X Y Z)
   
   [joint_conditional]  Theorem
      
      ⊢ ∀p X Y a b.
          prob_space p ∧ events p = POW (p_space p) ⇒
          joint_distribution p X Y (a × b) =
          conditional_distribution p Y X b a * distribution p X a
   
   [joint_distribution_le]  Theorem
      
      ⊢ ∀p X Y a b.
          prob_space p ∧ events p = POW (p_space p) ⇒
          joint_distribution p X Y (a × b) ≤ distribution p X a
   
   [joint_distribution_le2]  Theorem
      
      ⊢ ∀p X Y a b.
          prob_space p ∧ events p = POW (p_space p) ⇒
          joint_distribution p X Y (a × b) ≤ distribution p Y b
   
   [joint_distribution_le_1]  Theorem
      
      ⊢ ∀p X Y a.
          prob_space p ∧ events p = POW (p_space p) ⇒
          joint_distribution p X Y a ≤ 1
   
   [joint_distribution_pos]  Theorem
      
      ⊢ ∀p X Y a.
          prob_space p ∧ events p = POW (p_space p) ⇒
          0 ≤ joint_distribution p X Y a
   
   [joint_distribution_sum_mul1]  Theorem
      
      ⊢ ∀p X Y f.
          prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
          SIGMA (λ(x,y). joint_distribution p X Y {(x,y)} * f x)
            (IMAGE X (p_space p) × IMAGE Y (p_space p)) =
          SIGMA (λx. distribution p X {x} * f x) (IMAGE X (p_space p))
   
   [joint_distribution_sums_1]  Theorem
      
      ⊢ ∀p X Y.
          prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
          SIGMA (λ(x,y). joint_distribution p X Y {(x,y)})
            (IMAGE X (p_space p) × IMAGE Y (p_space p)) =
          1
   
   [joint_distribution_sym]  Theorem
      
      ⊢ ∀p X Y a b.
          prob_space p ⇒
          joint_distribution p X Y (a × b) =
          joint_distribution p Y X (b × a)
   
   [marginal_distribution1]  Theorem
      
      ⊢ ∀p X Y a.
          prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
          distribution p X a =
          SIGMA (λx. joint_distribution p X Y (a × {x}))
            (IMAGE Y (p_space p))
   
   [marginal_distribution2]  Theorem
      
      ⊢ ∀p X Y b.
          prob_space p ∧ FINITE (p_space p) ∧ events p = POW (p_space p) ⇒
          distribution p Y b =
          SIGMA (λx. joint_distribution p X Y ({x} × b))
            (IMAGE X (p_space p))
   
   [marginal_joint_zero]  Theorem
      
      ⊢ ∀p X Y s t.
          prob_space p ∧ events p = POW (p_space p) ∧
          (distribution p X s = 0 ∨ distribution p Y t = 0) ⇒
          joint_distribution p X Y (s × t) = 0
   
   [marginal_joint_zero3]  Theorem
      
      ⊢ ∀p X Y Z s t u.
          prob_space p ∧ events p = POW (p_space p) ∧
          (distribution p X s = 0 ∨ distribution p Y t = 0 ∨
           distribution p Z u = 0) ⇒
          joint_distribution3 p X Y Z (s × (t × u)) = 0
   
   [prob_x_eq_1_imp_prob_y_eq_0]  Theorem
      
      ⊢ ∀p x.
          prob_space p ∧ {x} ∈ events p ∧ prob p {x} = 1 ⇒
          ∀y. {y} ∈ events p ∧ y ≠ x ⇒ prob p {y} = 0
   
   [uniform_distribution_prob_space]  Theorem
      
      ⊢ ∀X p s.
          FINITE (p_space p) ∧ FINITE (space s) ∧ random_variable X p s ⇒
          prob_space (space s,subsets s,uniform_distribution p X s)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14