Structure real_lebesgueTheory
signature real_lebesgueTheory =
sig
type thm = Thm.thm
(* Definitions *)
val RN_deriv_def : thm
val countable_space_integral_def : thm
val finite_space_integral_def : thm
val fn_minus_def : thm
val fn_plus_def : thm
val integrable_def : thm
val integral_def : thm
val mon_upclose_def : thm
val mon_upclose_help_def : thm
val mono_increasing_def : thm
val nnfis_def : thm
val nonneg_def : thm
val pos_fn_integral_def : thm
val pos_simple_fn_def : thm
val pos_simple_fn_integral_def : thm
val prod_measure_def : thm
val prod_measure_space_def : thm
val psfis_def : thm
val psfs_def : thm
val upclose_def : thm
(* Theorems *)
val IN_psfis : thm
val borel_measurable_mon_conv_psfis : thm
val countable_space_integral_reduce : thm
val finite_POW_RN_deriv_reduce : thm
val finite_POW_prod_measure_reduce : thm
val finite_integral_on_set : thm
val finite_space_POW_integral_reduce : thm
val finite_space_integral_reduce : thm
val fn_plus_fn_minus_borel_measurable : thm
val fn_plus_fn_minus_borel_measurable_iff : thm
val indicator_fn_split : thm
val integral_add : thm
val integral_borel_measurable : thm
val integral_cmul_indicator : thm
val integral_indicator_fn : thm
val integral_mono : thm
val integral_times : thm
val integral_zero : thm
val markov_ineq : thm
val measure_space_finite_prod_measure_POW1 : thm
val measure_space_finite_prod_measure_POW2 : thm
val measure_split : thm
val mon_upclose_help_compute : thm
val mon_upclose_psfis : thm
val mono_increasing_converges_to_sup : thm
val nnfis_add : thm
val nnfis_borel_measurable : thm
val nnfis_dom_conv : thm
val nnfis_integral : thm
val nnfis_minus_nnfis_integral : thm
val nnfis_mon_conv : thm
val nnfis_mono : thm
val nnfis_pos_on_mspace : thm
val nnfis_times : thm
val nnfis_unique : thm
val pos_psfis : thm
val pos_simple_fn_integral_REAL_SUM_IMAGE : thm
val pos_simple_fn_integral_add : thm
val pos_simple_fn_integral_indicator : thm
val pos_simple_fn_integral_mono : thm
val pos_simple_fn_integral_mono_on_mspace : thm
val pos_simple_fn_integral_mult : thm
val pos_simple_fn_integral_present : thm
val pos_simple_fn_integral_unique : thm
val psfis_REAL_SUM_IMAGE : thm
val psfis_add : thm
val psfis_borel_measurable : thm
val psfis_equiv : thm
val psfis_indicator : thm
val psfis_intro : thm
val psfis_mono : thm
val psfis_mono_conv_mono : thm
val psfis_mult : thm
val psfis_nnfis : thm
val psfis_nonneg : thm
val psfis_present : thm
val psfis_unique : thm
val upclose_psfis : thm
val real_lebesgue_grammars : type_grammar.grammar * term_grammar.grammar
(*
[real_measure] Parent theory of "real_lebesgue"
[RN_deriv_def] Definition
⊢ ∀m v.
RN_deriv m v =
@f. measure_space m ∧
measure_space (m_space m,measurable_sets m,v) ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
∀a. a ∈ measurable_sets m ⇒
integral m (λx. f x * 𝟙 a x) = v a
[countable_space_integral_def] Definition
⊢ ∀m f.
countable_space_integral m f =
(let
e = enumerate (IMAGE f (m_space m))
in
suminf ((λr. r * measure m (PREIMAGE f {r} ∩ m_space m)) ∘ e))
[finite_space_integral_def] Definition
⊢ ∀m f.
finite_space_integral m f =
SIGMA (λr. r * measure m (PREIMAGE f {r} ∩ m_space m))
(IMAGE f (m_space m))
[fn_minus_def] Definition
⊢ ∀f. fn_minus f = (λx. if 0 ≤ f x then 0 else -f x)
[fn_plus_def] Definition
⊢ ∀f. fn_plus f = (λx. if 0 ≤ f x then f x else 0)
[integrable_def] Definition
⊢ ∀m f.
integrable m f ⇔
measure_space m ∧ (∃x. x ∈ nnfis m (fn_plus f)) ∧
∃y. y ∈ nnfis m (fn_minus f)
[integral_def] Definition
⊢ ∀m f.
integral m f =
(@i. i ∈ nnfis m (fn_plus f)) − @j. j ∈ nnfis m (fn_minus f)
[mon_upclose_def] Definition
⊢ ∀u m. mon_upclose u m = mon_upclose_help m u m
[mon_upclose_help_def] Definition
⊢ (∀u m. mon_upclose_help 0 u m = u m 0) ∧
∀n u m.
mon_upclose_help (SUC n) u m =
upclose (u m (SUC n)) (mon_upclose_help n u m)
[mono_increasing_def] Definition
⊢ ∀f. mono_increasing f ⇔ ∀m n. m ≤ n ⇒ f m ≤ f n
[nnfis_def] Definition
⊢ ∀m f.
nnfis m f =
{y |
∃u x.
mono_convergent u f (m_space m) ∧ (∀n. x n ∈ psfis m (u n)) ∧
x ⟶ y}
[nonneg_def] Definition
⊢ ∀f. nonneg f ⇔ ∀x. 0 ≤ f x
[pos_fn_integral_def] Definition
⊢ ∀m f.
pos_fn_integral m f =
sup {r | (∃g. r ∈ psfis m g ∧ ∀x. g x ≤ f x)}
[pos_simple_fn_def] Definition
⊢ ∀m f s a x.
pos_simple_fn m f s a x ⇔
(∀t. 0 ≤ f t) ∧
(∀t. t ∈ m_space m ⇒ f t = SIGMA (λi. x i * 𝟙 (a i) t) s) ∧
(∀i. i ∈ s ⇒ a i ∈ measurable_sets m) ∧ (∀i. 0 ≤ x i) ∧
FINITE s ∧ (∀i j. i ∈ s ∧ j ∈ s ∧ i ≠ j ⇒ DISJOINT (a i) (a j)) ∧
BIGUNION (IMAGE a s) = m_space m
[pos_simple_fn_integral_def] Definition
⊢ ∀m s a x.
pos_simple_fn_integral m s a x =
SIGMA (λi. x i * measure m (a i)) s
[prod_measure_def] Definition
⊢ ∀m0 m1.
prod_measure m0 m1 =
(λa. integral m0 (λs0. measure m1 (PREIMAGE (λs1. (s0,s1)) a)))
[prod_measure_space_def] Definition
⊢ ∀m0 m1.
prod_measure_space m0 m1 =
(m_space m0 × m_space m1,
subsets
(sigma (m_space m0 × m_space m1)
(prod_sets (measurable_sets m0) (measurable_sets m1))),
prod_measure m0 m1)
[psfis_def] Definition
⊢ ∀m f.
psfis m f =
IMAGE (λ(s,a,x). pos_simple_fn_integral m s a x) (psfs m f)
[psfs_def] Definition
⊢ ∀m f. psfs m f = {(s,a,x) | pos_simple_fn m f s a x}
[upclose_def] Definition
⊢ ∀f g. upclose f g = (λt. max (f t) (g t))
[IN_psfis] Theorem
⊢ ∀m r f.
r ∈ psfis m f ⇒
∃s a x.
pos_simple_fn m f s a x ∧ r = pos_simple_fn_integral m s a x
[borel_measurable_mon_conv_psfis] Theorem
⊢ ∀m f.
measure_space m ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
(∀t. t ∈ m_space m ⇒ 0 ≤ f t) ⇒
∃u x. mono_convergent u f (m_space m) ∧ ∀n. x n ∈ psfis m (u n)
[countable_space_integral_reduce] Theorem
⊢ ∀m f p n.
measure_space m ∧ positive m ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
COUNTABLE (IMAGE f (m_space m)) ∧
INFINITE (IMAGE (fn_plus f) (m_space m)) ∧
INFINITE (IMAGE (fn_minus f) (m_space m)) ∧
(λr. r * measure m (PREIMAGE (fn_minus f) {r} ∩ m_space m)) ∘
enumerate (IMAGE (fn_minus f) (m_space m)) sums n ∧
(λr. r * measure m (PREIMAGE (fn_plus f) {r} ∩ m_space m)) ∘
enumerate (IMAGE (fn_plus f) (m_space m)) sums p ⇒
integral m f = p − n
[finite_POW_RN_deriv_reduce] Theorem
⊢ ∀m v.
measure_space m ∧ FINITE (m_space m) ∧
measure_space (m_space m,measurable_sets m,v) ∧
POW (m_space m) = measurable_sets m ∧
(∀x. measure m {x} = 0 ⇒ v {x} = 0) ⇒
∀x. x ∈ m_space m ∧ measure m {x} ≠ 0 ⇒
RN_deriv m v x = v {x} / measure m {x}
[finite_POW_prod_measure_reduce] Theorem
⊢ ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ POW (m_space m0) = measurable_sets m0 ∧
POW (m_space m1) = measurable_sets m1 ⇒
∀a0 a1.
a0 ∈ measurable_sets m0 ∧ a1 ∈ measurable_sets m1 ⇒
prod_measure m0 m1 (a0 × a1) = measure m0 a0 * measure m1 a1
[finite_integral_on_set] Theorem
⊢ ∀m f a.
measure_space m ∧ FINITE (m_space m) ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
a ∈ measurable_sets m ⇒
integral m (λx. f x * 𝟙 a x) =
SIGMA (λr. r * measure m (PREIMAGE f {r} ∩ a)) (IMAGE f a)
[finite_space_POW_integral_reduce] Theorem
⊢ ∀m f.
measure_space m ∧ POW (m_space m) = measurable_sets m ∧
FINITE (m_space m) ⇒
integral m f = SIGMA (λx. f x * measure m {x}) (m_space m)
[finite_space_integral_reduce] Theorem
⊢ ∀m f.
measure_space m ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
FINITE (m_space m) ⇒
integral m f = finite_space_integral m f
[fn_plus_fn_minus_borel_measurable] Theorem
⊢ ∀f m.
measure_space m ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ⇒
fn_plus f ∈ borel_measurable (m_space m,measurable_sets m) ∧
fn_minus f ∈ borel_measurable (m_space m,measurable_sets m)
[fn_plus_fn_minus_borel_measurable_iff] Theorem
⊢ ∀f m.
measure_space m ⇒
(f ∈ borel_measurable (m_space m,measurable_sets m) ⇔
fn_plus f ∈ borel_measurable (m_space m,measurable_sets m) ∧
fn_minus f ∈ borel_measurable (m_space m,measurable_sets m))
[indicator_fn_split] Theorem
⊢ ∀r s b.
FINITE r ∧ BIGUNION (IMAGE b r) = s ∧
(∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ⇒
∀a. a ⊆ s ⇒ 𝟙 a = (λx. SIGMA (λi. 𝟙 (a ∩ b i) x) r)
[integral_add] Theorem
⊢ ∀m f g.
integrable m f ∧ integrable m g ⇒
integrable m (λt. f t + g t) ∧
integral m (λt. f t + g t) = integral m f + integral m g
[integral_borel_measurable] Theorem
⊢ ∀m f.
integrable m f ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)
[integral_cmul_indicator] Theorem
⊢ ∀m s c.
measure_space m ∧ s ∈ measurable_sets m ⇒
integral m (λx. c * 𝟙 s x) = c * measure m s
[integral_indicator_fn] Theorem
⊢ ∀m a.
measure_space m ∧ a ∈ measurable_sets m ⇒
integral m (𝟙 a) = measure m a ∧ integrable m (𝟙 a)
[integral_mono] Theorem
⊢ ∀m f g.
integrable m f ∧ integrable m g ∧ (∀t. t ∈ m_space m ⇒ f t ≤ g t) ⇒
integral m f ≤ integral m g
[integral_times] Theorem
⊢ ∀m f a.
integrable m f ⇒
integrable m (λt. a * f t) ∧
integral m (λt. a * f t) = a * integral m f
[integral_zero] Theorem
⊢ ∀m. measure_space m ⇒ integral m (λx. 0) = 0
[markov_ineq] Theorem
⊢ ∀m f a n.
integrable m f ∧ 0 < a ∧ integrable m (λx. abs (f x) pow n) ⇒
measure m (PREIMAGE f {y | a ≤ y} ∩ m_space m) ≤
integral m (λx. abs (f x) pow n) / a pow n
[measure_space_finite_prod_measure_POW1] Theorem
⊢ ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ POW (m_space m0) = measurable_sets m0 ∧
POW (m_space m1) = measurable_sets m1 ⇒
measure_space (prod_measure_space m0 m1)
[measure_space_finite_prod_measure_POW2] Theorem
⊢ ∀m0 m1.
measure_space m0 ∧ measure_space m1 ∧ FINITE (m_space m0) ∧
FINITE (m_space m1) ∧ POW (m_space m0) = measurable_sets m0 ∧
POW (m_space m1) = measurable_sets m1 ⇒
measure_space
(m_space m0 × m_space m1,POW (m_space m0 × m_space m1),
prod_measure m0 m1)
[measure_split] Theorem
⊢ ∀r b m.
measure_space m ∧ FINITE r ∧ BIGUNION (IMAGE b r) = m_space m ∧
(∀i j. i ∈ r ∧ j ∈ r ∧ i ≠ j ⇒ DISJOINT (b i) (b j)) ∧
(∀i. i ∈ r ⇒ b i ∈ measurable_sets m) ⇒
∀a. a ∈ measurable_sets m ⇒
measure m a = SIGMA (λi. measure m (a ∩ b i)) r
[mon_upclose_help_compute] Theorem
⊢ (∀u m. mon_upclose_help 0 u m = u m 0) ∧
(∀n u m.
mon_upclose_help (NUMERAL (BIT1 n)) u m =
upclose (u m (NUMERAL (BIT1 n)))
(mon_upclose_help (NUMERAL (BIT1 n) − 1) u m)) ∧
∀n u m.
mon_upclose_help (NUMERAL (BIT2 n)) u m =
upclose (u m (NUMERAL (BIT2 n)))
(mon_upclose_help (NUMERAL (BIT1 n)) u m)
[mon_upclose_psfis] Theorem
⊢ ∀m u.
measure_space m ∧ (∀n n'. ∃a. a ∈ psfis m (u n n')) ⇒
∃c. ∀n. c n ∈ psfis m (mon_upclose u n)
[mono_increasing_converges_to_sup] Theorem
⊢ ∀f r.
(∀i. 0 ≤ f i) ∧ mono_increasing f ∧ f ⟶ r ⇒
r = sup (IMAGE f 𝕌(:num))
[nnfis_add] Theorem
⊢ ∀f g m a b.
measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m g ⇒
a + b ∈ nnfis m (λw. f w + g w)
[nnfis_borel_measurable] Theorem
⊢ ∀m f a.
measure_space m ∧ a ∈ nnfis m f ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)
[nnfis_dom_conv] Theorem
⊢ ∀m f g b.
measure_space m ∧
f ∈ borel_measurable (m_space m,measurable_sets m) ∧
b ∈ nnfis m g ∧ (∀t. t ∈ m_space m ⇒ f t ≤ g t) ∧
(∀t. t ∈ m_space m ⇒ 0 ≤ f t) ⇒
∃a. a ∈ nnfis m f ∧ a ≤ b
[nnfis_integral] Theorem
⊢ ∀m f a.
measure_space m ∧ a ∈ nnfis m f ⇒
integrable m f ∧ integral m f = a
[nnfis_minus_nnfis_integral] Theorem
⊢ ∀m f g a b.
measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m g ⇒
integrable m (λt. f t − g t) ∧ integral m (λt. f t − g t) = a − b
[nnfis_mon_conv] Theorem
⊢ ∀f m h x y.
measure_space m ∧ mono_convergent f h (m_space m) ∧
(∀n. x n ∈ nnfis m (f n)) ∧ x ⟶ y ⇒
y ∈ nnfis m h
[nnfis_mono] Theorem
⊢ ∀f g m a b.
measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m g ∧
(∀w. w ∈ m_space m ⇒ f w ≤ g w) ⇒
a ≤ b
[nnfis_pos_on_mspace] Theorem
⊢ ∀f m a.
measure_space m ∧ a ∈ nnfis m f ⇒ ∀x. x ∈ m_space m ⇒ 0 ≤ f x
[nnfis_times] Theorem
⊢ ∀f m a z.
measure_space m ∧ a ∈ nnfis m f ∧ 0 ≤ z ⇒
z * a ∈ nnfis m (λw. z * f w)
[nnfis_unique] Theorem
⊢ ∀f m a b. measure_space m ∧ a ∈ nnfis m f ∧ b ∈ nnfis m f ⇒ a = b
[pos_psfis] Theorem
⊢ ∀r m f. measure_space m ∧ r ∈ psfis m f ⇒ 0 ≤ r
[pos_simple_fn_integral_REAL_SUM_IMAGE] Theorem
⊢ ∀m f s a x P.
measure_space m ∧
(∀i. i ∈ P ⇒ pos_simple_fn m (f i) (s i) (a i) (x i)) ∧ FINITE P ⇒
∃s' a' x'.
pos_simple_fn m (λt. SIGMA (λi. f i t) P) s' a' x' ∧
pos_simple_fn_integral m s' a' x' =
SIGMA (λi. pos_simple_fn_integral m (s i) (a i) (x i)) P
[pos_simple_fn_integral_add] Theorem
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ⇒
∃s'' c z.
pos_simple_fn m (λx. f x + g x) s'' c z ∧
pos_simple_fn_integral m s a x +
pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m s'' c z
[pos_simple_fn_integral_indicator] Theorem
⊢ ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
∃s a x.
pos_simple_fn m (𝟙 A) s a x ∧
pos_simple_fn_integral m s a x = measure m A
[pos_simple_fn_integral_mono] Theorem
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ∧ (∀x. f x ≤ g x) ⇒
pos_simple_fn_integral m s a x ≤ pos_simple_fn_integral m s' b y
[pos_simple_fn_integral_mono_on_mspace] Theorem
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ∧ (∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
pos_simple_fn_integral m s a x ≤ pos_simple_fn_integral m s' b y
[pos_simple_fn_integral_mult] Theorem
⊢ ∀m f s a x.
measure_space m ∧ pos_simple_fn m f s a x ⇒
∀z. 0 ≤ z ⇒
∃s' b y.
pos_simple_fn m (λx. z * f x) s' b y ∧
pos_simple_fn_integral m s' b y =
z * pos_simple_fn_integral m s a x
[pos_simple_fn_integral_present] Theorem
⊢ ∀m f s a x g s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m g s' b y ⇒
∃z z' c k.
(∀t. t ∈ m_space m ⇒ f t = SIGMA (λi. z i * 𝟙 (c i) t) k) ∧
(∀t. t ∈ m_space m ⇒ g t = SIGMA (λi. z' i * 𝟙 (c i) t) k) ∧
pos_simple_fn_integral m s a x = pos_simple_fn_integral m k c z ∧
pos_simple_fn_integral m s' b y =
pos_simple_fn_integral m k c z' ∧ FINITE k ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
BIGUNION (IMAGE c k) = m_space m ∧ (∀i. 0 ≤ z i) ∧ ∀i. 0 ≤ z' i
[pos_simple_fn_integral_unique] Theorem
⊢ ∀m f s a x s' b y.
measure_space m ∧ pos_simple_fn m f s a x ∧
pos_simple_fn m f s' b y ⇒
pos_simple_fn_integral m s a x = pos_simple_fn_integral m s' b y
[psfis_REAL_SUM_IMAGE] Theorem
⊢ ∀m f a P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ psfis m (f i)) ∧ FINITE P ⇒
SIGMA a P ∈ psfis m (λt. SIGMA (λi. f i t) P)
[psfis_add] Theorem
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
a + b ∈ psfis m (λx. f x + g x)
[psfis_borel_measurable] Theorem
⊢ ∀m f a.
measure_space m ∧ a ∈ psfis m f ⇒
f ∈ borel_measurable (m_space m,measurable_sets m)
[psfis_equiv] Theorem
⊢ ∀f g a m.
measure_space m ∧ a ∈ psfis m f ∧ (∀t. 0 ≤ g t) ∧
(∀t. t ∈ m_space m ⇒ f t = g t) ⇒
a ∈ psfis m g
[psfis_indicator] Theorem
⊢ ∀m A.
measure_space m ∧ A ∈ measurable_sets m ⇒
measure m A ∈ psfis m (𝟙 A)
[psfis_intro] Theorem
⊢ ∀m a x P.
measure_space m ∧ (∀i. i ∈ P ⇒ a i ∈ measurable_sets m) ∧
(∀i. 0 ≤ x i) ∧ FINITE P ⇒
SIGMA (λi. x i * measure m (a i)) P ∈
psfis m (λt. SIGMA (λi. x i * 𝟙 (a i) t) P)
[psfis_mono] Theorem
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ∧
(∀x. x ∈ m_space m ⇒ f x ≤ g x) ⇒
a ≤ b
[psfis_mono_conv_mono] Theorem
⊢ ∀m f u x y r s.
measure_space m ∧ mono_convergent u f (m_space m) ∧
(∀n. x n ∈ psfis m (u n)) ∧ (∀m n. m ≤ n ⇒ x m ≤ x n) ∧ x ⟶ y ∧
r ∈ psfis m s ∧ (∀a. a ∈ m_space m ⇒ s a ≤ f a) ⇒
r ≤ y
[psfis_mult] Theorem
⊢ ∀m f a.
measure_space m ∧ a ∈ psfis m f ⇒
∀z. 0 ≤ z ⇒ z * a ∈ psfis m (λx. z * f x)
[psfis_nnfis] Theorem
⊢ ∀m f a. measure_space m ∧ a ∈ psfis m f ⇒ a ∈ nnfis m f
[psfis_nonneg] Theorem
⊢ ∀m f a. a ∈ psfis m f ⇒ nonneg f
[psfis_present] Theorem
⊢ ∀m f g a b.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
∃z z' c k.
(∀t. t ∈ m_space m ⇒ f t = SIGMA (λi. z i * 𝟙 (c i) t) k) ∧
(∀t. t ∈ m_space m ⇒ g t = SIGMA (λi. z' i * 𝟙 (c i) t) k) ∧
a = pos_simple_fn_integral m k c z ∧
b = pos_simple_fn_integral m k c z' ∧ FINITE k ∧
(∀i j. i ∈ k ∧ j ∈ k ∧ i ≠ j ⇒ DISJOINT (c i) (c j)) ∧
(∀i. i ∈ k ⇒ c i ∈ measurable_sets m) ∧
BIGUNION (IMAGE c k) = m_space m ∧ (∀i. 0 ≤ z i) ∧ ∀i. 0 ≤ z' i
[psfis_unique] Theorem
⊢ ∀m f a b. measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m f ⇒ a = b
[upclose_psfis] Theorem
⊢ ∀f g a b m.
measure_space m ∧ a ∈ psfis m f ∧ b ∈ psfis m g ⇒
∃c. c ∈ psfis m (upclose f g)
*)
end
HOL 4, Kananaskis-14