Structure ratRingTheory


Source File Identifier index Theory binding index

signature ratRingTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val rat_interp_p_def : thm
    val rat_polynom_normalize_def : thm
    val rat_polynom_simplify_def : thm
    val rat_r_canonical_sum_merge_def : thm
    val rat_r_canonical_sum_prod_def : thm
    val rat_r_canonical_sum_scalar2_def : thm
    val rat_r_canonical_sum_scalar3_def : thm
    val rat_r_canonical_sum_scalar_def : thm
    val rat_r_canonical_sum_simplify_def : thm
    val rat_r_ics_aux_def : thm
    val rat_r_interp_cs_def : thm
    val rat_r_interp_m_def : thm
    val rat_r_interp_sp_def : thm
    val rat_r_interp_vl_def : thm
    val rat_r_ivl_aux_def : thm
    val rat_r_monom_insert_def : thm
    val rat_r_spolynom_normalize_def : thm
    val rat_r_spolynom_simplify_def : thm
    val rat_r_varlist_insert_def : thm
  
  (*  Theorems  *)
    val RAT_IS_RING : thm
    val rat_ring_thms : thm
  
  val ratRing_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [rat] Parent theory of "ratRing"
   
   [rat_interp_p_def]  Definition
      
      ⊢ rat_interp_p = interp_p (ring 0 1 $+ $* numeric_negate)
   
   [rat_polynom_normalize_def]  Definition
      
      ⊢ rat_polynom_normalize =
        polynom_normalize (ring 0 1 $+ $* numeric_negate)
   
   [rat_polynom_simplify_def]  Definition
      
      ⊢ rat_polynom_simplify =
        polynom_simplify (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_canonical_sum_merge_def]  Definition
      
      ⊢ rat_r_canonical_sum_merge =
        r_canonical_sum_merge (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_canonical_sum_prod_def]  Definition
      
      ⊢ rat_r_canonical_sum_prod =
        r_canonical_sum_prod (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_canonical_sum_scalar2_def]  Definition
      
      ⊢ rat_r_canonical_sum_scalar2 =
        r_canonical_sum_scalar2 (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_canonical_sum_scalar3_def]  Definition
      
      ⊢ rat_r_canonical_sum_scalar3 =
        r_canonical_sum_scalar3 (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_canonical_sum_scalar_def]  Definition
      
      ⊢ rat_r_canonical_sum_scalar =
        r_canonical_sum_scalar (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_canonical_sum_simplify_def]  Definition
      
      ⊢ rat_r_canonical_sum_simplify =
        r_canonical_sum_simplify (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_ics_aux_def]  Definition
      
      ⊢ rat_r_ics_aux = r_ics_aux (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_interp_cs_def]  Definition
      
      ⊢ rat_r_interp_cs = r_interp_cs (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_interp_m_def]  Definition
      
      ⊢ rat_r_interp_m = r_interp_m (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_interp_sp_def]  Definition
      
      ⊢ rat_r_interp_sp = r_interp_sp (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_interp_vl_def]  Definition
      
      ⊢ rat_r_interp_vl = r_interp_vl (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_ivl_aux_def]  Definition
      
      ⊢ rat_r_ivl_aux = r_ivl_aux (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_monom_insert_def]  Definition
      
      ⊢ rat_r_monom_insert = r_monom_insert (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_spolynom_normalize_def]  Definition
      
      ⊢ rat_r_spolynom_normalize =
        r_spolynom_normalize (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_spolynom_simplify_def]  Definition
      
      ⊢ rat_r_spolynom_simplify =
        r_spolynom_simplify (ring 0 1 $+ $* numeric_negate)
   
   [rat_r_varlist_insert_def]  Definition
      
      ⊢ rat_r_varlist_insert =
        r_varlist_insert (ring 0 1 $+ $* numeric_negate)
   
   [RAT_IS_RING]  Theorem
      
      ⊢ is_ring (ring 0 1 $+ $* numeric_negate)
   
   [rat_ring_thms]  Theorem
      
      ⊢ is_ring (ring 0 1 $+ $* numeric_negate) ∧
        (∀vm p.
           rat_interp_p vm p = rat_r_interp_cs vm (rat_polynom_simplify p)) ∧
        (((∀vm c. rat_interp_p vm (Pconst c) = c) ∧
          (∀vm i. rat_interp_p vm (Pvar i) = varmap_find i vm) ∧
          (∀vm p1 p2.
             rat_interp_p vm (Pplus p1 p2) =
             rat_interp_p vm p1 + rat_interp_p vm p2) ∧
          (∀vm p1 p2.
             rat_interp_p vm (Pmult p1 p2) =
             rat_interp_p vm p1 * rat_interp_p vm p2) ∧
          ∀vm p1. rat_interp_p vm (Popp p1) = -rat_interp_p vm p1) ∧
         (∀x v2 v1. varmap_find End_idx (Node_vm x v1 v2) = x) ∧
         (∀x v2 v1 i1.
            varmap_find (Right_idx i1) (Node_vm x v1 v2) =
            varmap_find i1 v2) ∧
         (∀x v2 v1 i1.
            varmap_find (Left_idx i1) (Node_vm x v1 v2) = varmap_find i1 v1) ∧
         ∀i. varmap_find i Empty_vm = @x. T) ∧
        ((∀t2 t1 l2 l1 c2 c1.
            rat_r_canonical_sum_merge (Cons_monom c1 l1 t1)
              (Cons_monom c2 l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS =>
                Cons_monom c1 l1
                  (rat_r_canonical_sum_merge t1 (Cons_monom c2 l2 t2))
            | EQUAL =>
              Cons_monom (c1 + c2) l1 (rat_r_canonical_sum_merge t1 t2)
            | GREATER =>
              Cons_monom c2 l2
                (rat_r_canonical_sum_merge (Cons_monom c1 l1 t1) t2)) ∧
         (∀t2 t1 l2 l1 c1.
            rat_r_canonical_sum_merge (Cons_monom c1 l1 t1)
              (Cons_varlist l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS =>
                Cons_monom c1 l1
                  (rat_r_canonical_sum_merge t1 (Cons_varlist l2 t2))
            | EQUAL =>
              Cons_monom (c1 + 1) l1 (rat_r_canonical_sum_merge t1 t2)
            | GREATER =>
              Cons_varlist l2
                (rat_r_canonical_sum_merge (Cons_monom c1 l1 t1) t2)) ∧
         (∀t2 t1 l2 l1 c2.
            rat_r_canonical_sum_merge (Cons_varlist l1 t1)
              (Cons_monom c2 l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS =>
                Cons_varlist l1
                  (rat_r_canonical_sum_merge t1 (Cons_monom c2 l2 t2))
            | EQUAL =>
              Cons_monom (1 + c2) l1 (rat_r_canonical_sum_merge t1 t2)
            | GREATER =>
              Cons_monom c2 l2
                (rat_r_canonical_sum_merge (Cons_varlist l1 t1) t2)) ∧
         (∀t2 t1 l2 l1.
            rat_r_canonical_sum_merge (Cons_varlist l1 t1)
              (Cons_varlist l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS =>
                Cons_varlist l1
                  (rat_r_canonical_sum_merge t1 (Cons_varlist l2 t2))
            | EQUAL =>
              Cons_monom (1 + 1) l1 (rat_r_canonical_sum_merge t1 t2)
            | GREATER =>
              Cons_varlist l2
                (rat_r_canonical_sum_merge (Cons_varlist l1 t1) t2)) ∧
         (∀s1. rat_r_canonical_sum_merge s1 Nil_monom = s1) ∧
         (∀v6 v5 v4.
            rat_r_canonical_sum_merge Nil_monom (Cons_monom v4 v5 v6) =
            Cons_monom v4 v5 v6) ∧
         ∀v8 v7.
           rat_r_canonical_sum_merge Nil_monom (Cons_varlist v7 v8) =
           Cons_varlist v7 v8) ∧
        ((∀t2 l2 l1 c2 c1.
            rat_r_monom_insert c1 l1 (Cons_monom c2 l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS => Cons_monom c1 l1 (Cons_monom c2 l2 t2)
            | EQUAL => Cons_monom (c1 + c2) l1 t2
            | GREATER => Cons_monom c2 l2 (rat_r_monom_insert c1 l1 t2)) ∧
         (∀t2 l2 l1 c1.
            rat_r_monom_insert c1 l1 (Cons_varlist l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS => Cons_monom c1 l1 (Cons_varlist l2 t2)
            | EQUAL => Cons_monom (c1 + 1) l1 t2
            | GREATER => Cons_varlist l2 (rat_r_monom_insert c1 l1 t2)) ∧
         ∀l1 c1.
           rat_r_monom_insert c1 l1 Nil_monom = Cons_monom c1 l1 Nil_monom) ∧
        ((∀t2 l2 l1 c2.
            rat_r_varlist_insert l1 (Cons_monom c2 l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS => Cons_varlist l1 (Cons_monom c2 l2 t2)
            | EQUAL => Cons_monom (1 + c2) l1 t2
            | GREATER => Cons_monom c2 l2 (rat_r_varlist_insert l1 t2)) ∧
         (∀t2 l2 l1.
            rat_r_varlist_insert l1 (Cons_varlist l2 t2) =
            case list_compare index_compare l1 l2 of
              LESS => Cons_varlist l1 (Cons_varlist l2 t2)
            | EQUAL => Cons_monom (1 + 1) l1 t2
            | GREATER => Cons_varlist l2 (rat_r_varlist_insert l1 t2)) ∧
         ∀l1. rat_r_varlist_insert l1 Nil_monom = Cons_varlist l1 Nil_monom) ∧
        ((∀c0 c l t.
            rat_r_canonical_sum_scalar c0 (Cons_monom c l t) =
            Cons_monom (c0 * c) l (rat_r_canonical_sum_scalar c0 t)) ∧
         (∀c0 l t.
            rat_r_canonical_sum_scalar c0 (Cons_varlist l t) =
            Cons_monom c0 l (rat_r_canonical_sum_scalar c0 t)) ∧
         ∀c0. rat_r_canonical_sum_scalar c0 Nil_monom = Nil_monom) ∧
        ((∀l0 c l t.
            rat_r_canonical_sum_scalar2 l0 (Cons_monom c l t) =
            rat_r_monom_insert c (list_merge index_lt l0 l)
              (rat_r_canonical_sum_scalar2 l0 t)) ∧
         (∀l0 l t.
            rat_r_canonical_sum_scalar2 l0 (Cons_varlist l t) =
            rat_r_varlist_insert (list_merge index_lt l0 l)
              (rat_r_canonical_sum_scalar2 l0 t)) ∧
         ∀l0. rat_r_canonical_sum_scalar2 l0 Nil_monom = Nil_monom) ∧
        ((∀c0 l0 c l t.
            rat_r_canonical_sum_scalar3 c0 l0 (Cons_monom c l t) =
            rat_r_monom_insert (c0 * c) (list_merge index_lt l0 l)
              (rat_r_canonical_sum_scalar3 c0 l0 t)) ∧
         (∀c0 l0 l t.
            rat_r_canonical_sum_scalar3 c0 l0 (Cons_varlist l t) =
            rat_r_monom_insert c0 (list_merge index_lt l0 l)
              (rat_r_canonical_sum_scalar3 c0 l0 t)) ∧
         ∀c0 l0. rat_r_canonical_sum_scalar3 c0 l0 Nil_monom = Nil_monom) ∧
        ((∀c1 l1 t1 s2.
            rat_r_canonical_sum_prod (Cons_monom c1 l1 t1) s2 =
            rat_r_canonical_sum_merge
              (rat_r_canonical_sum_scalar3 c1 l1 s2)
              (rat_r_canonical_sum_prod t1 s2)) ∧
         (∀l1 t1 s2.
            rat_r_canonical_sum_prod (Cons_varlist l1 t1) s2 =
            rat_r_canonical_sum_merge (rat_r_canonical_sum_scalar2 l1 s2)
              (rat_r_canonical_sum_prod t1 s2)) ∧
         ∀s2. rat_r_canonical_sum_prod Nil_monom s2 = Nil_monom) ∧
        ((∀c l t.
            rat_r_canonical_sum_simplify (Cons_monom c l t) =
            if c = 0 then rat_r_canonical_sum_simplify t
            else if c = 1 then
              Cons_varlist l (rat_r_canonical_sum_simplify t)
            else Cons_monom c l (rat_r_canonical_sum_simplify t)) ∧
         (∀l t.
            rat_r_canonical_sum_simplify (Cons_varlist l t) =
            Cons_varlist l (rat_r_canonical_sum_simplify t)) ∧
         rat_r_canonical_sum_simplify Nil_monom = Nil_monom) ∧
        ((∀vm x. rat_r_ivl_aux vm x [] = varmap_find x vm) ∧
         ∀vm x x' t'.
           rat_r_ivl_aux vm x (x'::t') =
           varmap_find x vm * rat_r_ivl_aux vm x' t') ∧
        ((∀vm. rat_r_interp_vl vm [] = 1) ∧
         ∀vm x t. rat_r_interp_vl vm (x::t) = rat_r_ivl_aux vm x t) ∧
        ((∀vm c. rat_r_interp_m vm c [] = c) ∧
         ∀vm c x t. rat_r_interp_m vm c (x::t) = c * rat_r_ivl_aux vm x t) ∧
        ((∀vm a. rat_r_ics_aux vm a Nil_monom = a) ∧
         (∀vm a l t.
            rat_r_ics_aux vm a (Cons_varlist l t) =
            a + rat_r_ics_aux vm (rat_r_interp_vl vm l) t) ∧
         ∀vm a c l t.
           rat_r_ics_aux vm a (Cons_monom c l t) =
           a + rat_r_ics_aux vm (rat_r_interp_m vm c l) t) ∧
        ((∀vm. rat_r_interp_cs vm Nil_monom = 0) ∧
         (∀vm l t.
            rat_r_interp_cs vm (Cons_varlist l t) =
            rat_r_ics_aux vm (rat_r_interp_vl vm l) t) ∧
         ∀vm c l t.
           rat_r_interp_cs vm (Cons_monom c l t) =
           rat_r_ics_aux vm (rat_r_interp_m vm c l) t) ∧
        ((∀i. rat_polynom_normalize (Pvar i) = Cons_varlist [i] Nil_monom) ∧
         (∀c. rat_polynom_normalize (Pconst c) = Cons_monom c [] Nil_monom) ∧
         (∀pl pr.
            rat_polynom_normalize (Pplus pl pr) =
            rat_r_canonical_sum_merge (rat_polynom_normalize pl)
              (rat_polynom_normalize pr)) ∧
         (∀pl pr.
            rat_polynom_normalize (Pmult pl pr) =
            rat_r_canonical_sum_prod (rat_polynom_normalize pl)
              (rat_polynom_normalize pr)) ∧
         ∀p. rat_polynom_normalize (Popp p) =
             rat_r_canonical_sum_scalar3 (-1) [] (rat_polynom_normalize p)) ∧
        ∀x. rat_polynom_simplify x =
            rat_r_canonical_sum_simplify (rat_polynom_normalize x)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14