Structure quotientTheory
signature quotientTheory =
sig
type thm = Thm.thm
(* Definitions *)
val ?!! : thm
val EQUIV_def : thm
val FUN_MAP : thm
val FUN_REL : thm
val PARTIAL_EQUIV_def : thm
val QUOTIENT_def : thm
val RES_EXISTS_EQUIV_DEF : thm
val respects_def : thm
(* Theorems *)
val ABSTRACT_PRS : thm
val ABSTRACT_RES_ABSTRACT : thm
val APPLY_PRS : thm
val APPLY_RSP : thm
val COND_PRS : thm
val COND_RSP : thm
val CONJ_IMPLIES : thm
val C_PRS : thm
val C_RSP : thm
val DISJ_IMPLIES : thm
val EQUALS_EQUIV_IMPLIES : thm
val EQUALS_IMPLIES : thm
val EQUALS_PRS : thm
val EQUALS_RSP : thm
val EQUIV_IMP_PARTIAL_EQUIV : thm
val EQUIV_REFL_SYM_TRANS : thm
val EQUIV_RES_ABSTRACT_LEFT : thm
val EQUIV_RES_ABSTRACT_RIGHT : thm
val EQUIV_RES_EXISTS : thm
val EQUIV_RES_EXISTS_UNIQUE : thm
val EQUIV_RES_FORALL : thm
val EQ_IMPLIES : thm
val EXISTS_PRS : thm
val EXISTS_REGULAR : thm
val EXISTS_UNIQUE_PRS : thm
val EXISTS_UNIQUE_REGULAR : thm
val FORALL_PRS : thm
val FORALL_REGULAR : thm
val FUN_MAP_I : thm
val FUN_MAP_THM : thm
val FUN_QUOTIENT : thm
val FUN_REL_EQ : thm
val FUN_REL_EQUALS : thm
val FUN_REL_EQ_REL : thm
val FUN_REL_IMP : thm
val FUN_REL_MP : thm
val IDENTITY_EQUIV : thm
val IDENTITY_QUOTIENT : thm
val IMP_IMPLIES : thm
val IN_FUN : thm
val IN_RESPECTS : thm
val I_PRS : thm
val I_RSP : thm
val K_PRS : thm
val K_RSP : thm
val LAMBDA_PRS : thm
val LAMBDA_PRS1 : thm
val LAMBDA_REP_ABS_RSP : thm
val LAMBDA_RSP : thm
val LEFT_RES_EXISTS_REGULAR : thm
val LEFT_RES_FORALL_REGULAR : thm
val LET_PRS : thm
val LET_RES_ABSTRACT : thm
val LET_RSP : thm
val NOT_IMPLIES : thm
val QUOTIENT_ABS_REP : thm
val QUOTIENT_REL : thm
val QUOTIENT_REL_ABS : thm
val QUOTIENT_REL_ABS_EQ : thm
val QUOTIENT_REL_REP : thm
val QUOTIENT_REP_ABS : thm
val QUOTIENT_REP_REFL : thm
val QUOTIENT_SYM : thm
val QUOTIENT_TRANS : thm
val REP_ABS_RSP : thm
val RESPECTS : thm
val RESPECTS_MP : thm
val RESPECTS_REP_ABS : thm
val RESPECTS_THM : thm
val RESPECTS_o : thm
val RES_ABSTRACT_ABSTRACT : thm
val RES_ABSTRACT_RSP : thm
val RES_EXISTS_EQUIV : thm
val RES_EXISTS_EQUIV_RSP : thm
val RES_EXISTS_PRS : thm
val RES_EXISTS_REGULAR : thm
val RES_EXISTS_RSP : thm
val RES_EXISTS_UNIQUE_REGULAR : thm
val RES_EXISTS_UNIQUE_REGULAR_SAME : thm
val RES_EXISTS_UNIQUE_RESPECTS_REGULAR : thm
val RES_FORALL_PRS : thm
val RES_FORALL_REGULAR : thm
val RES_FORALL_RSP : thm
val RIGHT_RES_EXISTS_REGULAR : thm
val RIGHT_RES_FORALL_REGULAR : thm
val W_PRS : thm
val W_RSP : thm
val literal_case_PRS : thm
val literal_case_RSP : thm
val o_PRS : thm
val o_RSP : thm
val quotient_grammars : type_grammar.grammar * term_grammar.grammar
(*
[indexedLists] Parent theory of "quotient"
[patternMatches] Parent theory of "quotient"
[res_quan] Parent theory of "quotient"
[?!!] Definition
⊢ ∀P. $?!! P ⇔ $?! P
[EQUIV_def] Definition
⊢ ∀E. EQUIV E ⇔ ∀x y. E x y ⇔ E x = E y
[FUN_MAP] Definition
⊢ ∀f g. f --> g = (λh x. g (h (f x)))
[FUN_REL] Definition
⊢ ∀R1 R2 f g. (R1 ===> R2) f g ⇔ ∀x y. R1 x y ⇒ R2 (f x) (g y)
[PARTIAL_EQUIV_def] Definition
⊢ ∀R. PARTIAL_EQUIV R ⇔
(∃x. R x x) ∧ ∀x y. R x y ⇔ R x x ∧ R y y ∧ R x = R y
[QUOTIENT_def] Definition
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇔
(∀a. abs (rep a) = a) ∧ (∀a. R (rep a) (rep a)) ∧
∀r s. R r s ⇔ R r r ∧ R s s ∧ abs r = abs s
[RES_EXISTS_EQUIV_DEF] Definition
⊢ RES_EXISTS_EQUIV =
(λR P. (∃x::respects R. P x) ∧ ∀x y::respects R. P x ∧ P y ⇒ R x y)
[respects_def] Definition
⊢ respects = W
[ABSTRACT_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f. f =
(rep1 --> abs2)
(RES_ABSTRACT (respects R1) ((abs1 --> rep2) f))
[ABSTRACT_RES_ABSTRACT] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 f g.
(R1 ===> R2) f g ⇒
(R1 ===> R2) f (RES_ABSTRACT (respects R1) g)
[APPLY_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f x. f x = abs2 ((abs1 --> rep2) f (rep1 x))
[APPLY_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g x y. (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (f x) (g y)
[COND_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀a b c. (if a then b else c) = abs (if a then rep b else rep c)
[COND_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀a1 a2 b1 b2 c1 c2.
(a1 ⇔ a2) ∧ R b1 b2 ∧ R c1 c2 ⇒
R (if a1 then b1 else c1) (if a2 then b2 else c2)
[CONJ_IMPLIES] Theorem
⊢ ∀P P' Q Q'. (P ⇒ Q) ∧ (P' ⇒ Q') ⇒ P ∧ P' ⇒ Q ∧ Q'
[C_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f x y.
flip f x y =
abs3 (flip ((abs1 --> abs2 --> rep3) f) (rep2 x) (rep1 y))
[C_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f1 f2 x1 x2 y1 y2.
(R1 ===> R2 ===> R3) f1 f2 ∧ R2 x1 x2 ∧ R1 y1 y2 ⇒
R3 (flip f1 x1 y1) (flip f2 x2 y2)
[DISJ_IMPLIES] Theorem
⊢ ∀P P' Q Q'. (P ⇒ Q) ∧ (P' ⇒ Q') ⇒ P ∨ P' ⇒ Q ∨ Q'
[EQUALS_EQUIV_IMPLIES] Theorem
⊢ ∀R. EQUIV R ⇒ R a1 a2 ∧ R b1 b2 ⇒ a1 = b1 ⇒ R a2 b2
[EQUALS_IMPLIES] Theorem
⊢ ∀P P' Q Q'. P = Q ∧ P' = Q' ⇒ P = P' ⇒ Q = Q'
[EQUALS_PRS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y. x = y ⇔ R (rep x) (rep y)
[EQUALS_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀x1 x2 y1 y2. R x1 x2 ∧ R y1 y2 ⇒ (R x1 y1 ⇔ R x2 y2)
[EQUIV_IMP_PARTIAL_EQUIV] Theorem
⊢ ∀R. EQUIV R ⇒ PARTIAL_EQUIV R
[EQUIV_REFL_SYM_TRANS] Theorem
⊢ ∀R. (∀x y. R x y ⇔ R x = R y) ⇔
(∀x. R x x) ∧ (∀x y. R x y ⇒ R y x) ∧
∀x y z. R x y ∧ R y z ⇒ R x z
[EQUIV_RES_ABSTRACT_LEFT] Theorem
⊢ ∀R1 R2 f1 f2 x1 x2.
R2 (f1 x1) (f2 x2) ∧ R1 x1 x1 ⇒
R2 (RES_ABSTRACT (respects R1) f1 x1) (f2 x2)
[EQUIV_RES_ABSTRACT_RIGHT] Theorem
⊢ ∀R1 R2 f1 f2 x1 x2.
R2 (f1 x1) (f2 x2) ∧ R1 x2 x2 ⇒
R2 (f1 x1) (RES_ABSTRACT (respects R1) f2 x2)
[EQUIV_RES_EXISTS] Theorem
⊢ ∀E P. EQUIV E ⇒ (RES_EXISTS (respects E) P ⇔ $? P)
[EQUIV_RES_EXISTS_UNIQUE] Theorem
⊢ ∀E P. EQUIV E ⇒ (RES_EXISTS_UNIQUE (respects E) P ⇔ $?! P)
[EQUIV_RES_FORALL] Theorem
⊢ ∀E P. EQUIV E ⇒ (RES_FORALL (respects E) P ⇔ $! P)
[EQ_IMPLIES] Theorem
⊢ ∀P Q. (P ⇔ Q) ⇒ P ⇒ Q
[EXISTS_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀f. $? f ⇔ RES_EXISTS (respects R) ((abs --> I) f)
[EXISTS_REGULAR] Theorem
⊢ ∀P Q. (∀x. P x ⇒ Q x) ⇒ $? P ⇒ $? Q
[EXISTS_UNIQUE_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀f. $?! f ⇔ RES_EXISTS_EQUIV R ((abs --> I) f)
[EXISTS_UNIQUE_REGULAR] Theorem
⊢ ∀P E Q.
(∀x. P x ⇒ respects E x ∧ Q x) ∧
(∀x y. respects E x ∧ Q x ∧ respects E y ∧ Q y ⇒ E x y) ⇒
$?! P ⇒
RES_EXISTS_EQUIV E Q
[FORALL_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀f. $! f ⇔ RES_FORALL (respects R) ((abs --> I) f)
[FORALL_REGULAR] Theorem
⊢ ∀P Q. (∀x. P x ⇒ Q x) ⇒ $! P ⇒ $! Q
[FUN_MAP_I] Theorem
⊢ I --> I = I
[FUN_MAP_THM] Theorem
⊢ ∀f g h x. (f --> g) h x = g (h (f x))
[FUN_QUOTIENT] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
QUOTIENT (R1 ===> R2) (rep1 --> abs2) (abs1 --> rep2)
[FUN_REL_EQ] Theorem
⊢ $= ===> $= = $=
[FUN_REL_EQUALS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g.
respects (R1 ===> R2) f ∧ respects (R1 ===> R2) g ⇒
((rep1 --> abs2) f = (rep1 --> abs2) g ⇔
∀x y. R1 x y ⇒ R2 (f x) (g y))
[FUN_REL_EQ_REL] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g.
(R1 ===> R2) f g ⇔
respects (R1 ===> R2) f ∧ respects (R1 ===> R2) g ∧
(rep1 --> abs2) f = (rep1 --> abs2) g
[FUN_REL_IMP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g.
respects (R1 ===> R2) f ∧ respects (R1 ===> R2) g ∧
(rep1 --> abs2) f = (rep1 --> abs2) g ⇒
∀x y. R1 x y ⇒ R2 (f x) (g y)
[FUN_REL_MP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g x y. (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (f x) (g y)
[IDENTITY_EQUIV] Theorem
⊢ EQUIV $=
[IDENTITY_QUOTIENT] Theorem
⊢ QUOTIENT $= I I
[IMP_IMPLIES] Theorem
⊢ ∀P P' Q Q'. (Q ⇒ P) ∧ (P' ⇒ Q') ⇒ (P ⇒ P') ⇒ Q ⇒ Q'
[IN_FUN] Theorem
⊢ ∀f g s x. x ∈ (f --> g) s ⇔ g (f x ∈ s)
[IN_RESPECTS] Theorem
⊢ ∀R x. x ∈ respects R ⇔ R x x
[I_PRS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀e. I e = abs (I (rep e))
[I_RSP] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀e1 e2. R e1 e2 ⇒ R (I e1) (I e2)
[K_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀x y. K x y = abs1 (K (rep1 x) (rep2 y))
[K_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀x1 x2 y1 y2. R1 x1 x2 ∧ R2 y1 y2 ⇒ R1 (K x1 y1) (K x2 y2)
[LAMBDA_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f. (λx. f x) = (rep1 --> abs2) (λx. rep2 (f (abs1 x)))
[LAMBDA_PRS1] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f. (λx. f x) = (rep1 --> abs2) (λx. (abs1 --> rep2) f x)
[LAMBDA_REP_ABS_RSP] Theorem
⊢ ∀REL1 abs1 rep1 REL2 abs2 rep2 f1 f2.
((∀r r'. REL1 r r' ⇒ REL1 r (rep1 (abs1 r'))) ∧
∀r r'. REL2 r r' ⇒ REL2 r (rep2 (abs2 r'))) ∧
(REL1 ===> REL2) f1 f2 ⇒
(REL1 ===> REL2) f1 ((abs1 --> rep2) ((rep1 --> abs2) f2))
[LAMBDA_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f1 f2. (R1 ===> R2) f1 f2 ⇒ (R1 ===> R2) (λx. f1 x) (λy. f2 y)
[LEFT_RES_EXISTS_REGULAR] Theorem
⊢ ∀P R Q. (∀x. R x ⇒ Q x ⇒ P x) ⇒ RES_EXISTS R Q ⇒ $? P
[LEFT_RES_FORALL_REGULAR] Theorem
⊢ ∀P R Q. (∀x. R x ∧ (Q x ⇒ P x)) ⇒ RES_FORALL R Q ⇒ $! P
[LET_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f x. LET f x = abs2 (LET ((abs1 --> rep2) f) (rep1 x))
[LET_RES_ABSTRACT] Theorem
⊢ ∀r lam v. v ∈ r ⇒ LET (RES_ABSTRACT r lam) v = LET lam v
[LET_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g x y. (R1 ===> R2) f g ∧ R1 x y ⇒ R2 (LET f x) (LET g y)
[NOT_IMPLIES] Theorem
⊢ ∀P Q. (Q ⇒ P) ⇒ ¬P ⇒ ¬Q
[QUOTIENT_ABS_REP] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀a. abs (rep a) = a
[QUOTIENT_REL] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒ ∀r s. R r s ⇔ R r r ∧ R s s ∧ abs r = abs s
[QUOTIENT_REL_ABS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀r s. R r s ⇒ abs r = abs s
[QUOTIENT_REL_ABS_EQ] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀r s. R r r ⇒ R s s ⇒ (R r s ⇔ abs r = abs s)
[QUOTIENT_REL_REP] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀a b. R (rep a) (rep b) ⇔ a = b
[QUOTIENT_REP_ABS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀r. R r r ⇒ R (rep (abs r)) r
[QUOTIENT_REP_REFL] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀a. R (rep a) (rep a)
[QUOTIENT_SYM] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y. R x y ⇒ R y x
[QUOTIENT_TRANS] Theorem
⊢ ∀R abs rep. QUOTIENT R abs rep ⇒ ∀x y z. R x y ∧ R y z ⇒ R x z
[REP_ABS_RSP] Theorem
⊢ ∀REL abs rep.
QUOTIENT REL abs rep ⇒ ∀x1 x2. REL x1 x2 ⇒ REL x1 (rep (abs x2))
[RESPECTS] Theorem
⊢ ∀R x. respects R x ⇔ R x x
[RESPECTS_MP] Theorem
⊢ ∀R1 R2 f x y. respects (R1 ===> R2) f ∧ R1 x y ⇒ R2 (f x) (f y)
[RESPECTS_REP_ABS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 f x.
respects (R1 ===> R2) f ∧ R1 x x ⇒ R2 (f (rep1 (abs1 x))) (f x)
[RESPECTS_THM] Theorem
⊢ ∀R1 R2 f. respects (R1 ===> R2) f ⇔ ∀x y. R1 x y ⇒ R2 (f x) (f y)
[RESPECTS_o] Theorem
⊢ ∀R1 R2 R3 f g.
respects (R2 ===> R3) f ∧ respects (R1 ===> R2) g ⇒
respects (R1 ===> R3) (f ∘ g)
[RES_ABSTRACT_ABSTRACT] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 f g.
(R1 ===> R2) f g ⇒
(R1 ===> R2) (RES_ABSTRACT (respects R1) f) g
[RES_ABSTRACT_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f1 f2.
(R1 ===> R2) f1 f2 ⇒
(R1 ===> R2) (RES_ABSTRACT (respects R1) f1)
(RES_ABSTRACT (respects R1) f2)
[RES_EXISTS_EQUIV] Theorem
⊢ ∀R m.
RES_EXISTS_EQUIV R m ⇔
(∃x::respects R. m x) ∧ ∀x y::respects R. m x ∧ m y ⇒ R x y
[RES_EXISTS_EQUIV_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀f g.
(R ===> $<=>) f g ⇒
(RES_EXISTS_EQUIV R f ⇔ RES_EXISTS_EQUIV R g)
[RES_EXISTS_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀P f. RES_EXISTS P f ⇔ RES_EXISTS ((abs --> I) P) ((abs --> I) f)
[RES_EXISTS_REGULAR] Theorem
⊢ ∀P Q R. (∀x. R x ⇒ P x ⇒ Q x) ⇒ RES_EXISTS R P ⇒ RES_EXISTS R Q
[RES_EXISTS_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀f g.
(R ===> $<=>) f g ⇒
(RES_EXISTS (respects R) f ⇔ RES_EXISTS (respects R) g)
[RES_EXISTS_UNIQUE_REGULAR] Theorem
⊢ ∀P R Q.
(∀x. P x ⇒ Q x) ∧
(∀x y. respects R x ∧ Q x ∧ respects R y ∧ Q y ⇒ R x y) ⇒
RES_EXISTS_UNIQUE (respects R) P ⇒
RES_EXISTS_EQUIV R Q
[RES_EXISTS_UNIQUE_REGULAR_SAME] Theorem
⊢ ∀R P Q.
(R ===> $<=>) P Q ⇒
RES_EXISTS_UNIQUE (respects R) P ⇒
RES_EXISTS_EQUIV R Q
[RES_EXISTS_UNIQUE_RESPECTS_REGULAR] Theorem
⊢ ∀R P. RES_EXISTS_UNIQUE (respects R) P ⇒ RES_EXISTS_EQUIV R P
[RES_FORALL_PRS] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀P f. RES_FORALL P f ⇔ RES_FORALL ((abs --> I) P) ((abs --> I) f)
[RES_FORALL_REGULAR] Theorem
⊢ ∀P Q R. (∀x. R x ⇒ P x ⇒ Q x) ⇒ RES_FORALL R P ⇒ RES_FORALL R Q
[RES_FORALL_RSP] Theorem
⊢ ∀R abs rep.
QUOTIENT R abs rep ⇒
∀f g.
(R ===> $<=>) f g ⇒
(RES_FORALL (respects R) f ⇔ RES_FORALL (respects R) g)
[RIGHT_RES_EXISTS_REGULAR] Theorem
⊢ ∀P R Q. (∀x. R x ∧ (P x ⇒ Q x)) ⇒ $? P ⇒ RES_EXISTS R Q
[RIGHT_RES_FORALL_REGULAR] Theorem
⊢ ∀P R Q. (∀x. R x ⇒ P x ⇒ Q x) ⇒ $! P ⇒ RES_FORALL R Q
[W_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f x. W f x = abs2 (W ((abs1 --> abs1 --> rep2) f) (rep1 x))
[W_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f1 f2 x1 x2.
(R1 ===> R1 ===> R2) f1 f2 ∧ R1 x1 x2 ⇒
R2 (W f1 x1) (W f2 x2)
[literal_case_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f x.
literal_case f x =
abs2 (literal_case ((abs1 --> rep2) f) (rep1 x))
[literal_case_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀f g x y.
(R1 ===> R2) f g ∧ R1 x y ⇒
R2 (literal_case f x) (literal_case g y)
[o_PRS] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f g.
f ∘ g =
(rep1 --> abs3) ((abs2 --> rep3) f ∘ (abs1 --> rep2) g)
[o_RSP] Theorem
⊢ ∀R1 abs1 rep1.
QUOTIENT R1 abs1 rep1 ⇒
∀R2 abs2 rep2.
QUOTIENT R2 abs2 rep2 ⇒
∀R3 abs3 rep3.
QUOTIENT R3 abs3 rep3 ⇒
∀f1 f2 g1 g2.
(R2 ===> R3) f1 f2 ∧ (R1 ===> R2) g1 g2 ⇒
(R1 ===> R3) (f1 ∘ g1) (f2 ∘ g2)
*)
end
HOL 4, Kananaskis-14