Structure primeFactorTheory
signature primeFactorTheory =
sig
type thm = Thm.thm
(* Definitions *)
val PRIME_FACTORS_def : thm
(* Theorems *)
val DIVISOR_IN_PRIME_FACTORS : thm
val FACTORS_prime : thm
val PRIME_FACTORIZATION : thm
val PRIME_FACTORS_1 : thm
val PRIME_FACTORS_EXIST : thm
val PRIME_FACTORS_EXP : thm
val PRIME_FACTORS_MULT : thm
val PRIME_FACTOR_DIVIDES : thm
val UNIQUE_PRIME_FACTORS : thm
val primeFactor_grammars : type_grammar.grammar * term_grammar.grammar
(*
[bag] Parent theory of "primeFactor"
[gcd] Parent theory of "primeFactor"
[PRIME_FACTORS_def] Definition
⊢ ∀n. 0 < n ⇒
FINITE_BAG (PRIME_FACTORS n) ∧
(∀m. m ⋲ PRIME_FACTORS n ⇒ prime m) ∧
n = BAG_GEN_PROD (PRIME_FACTORS n) 1
[DIVISOR_IN_PRIME_FACTORS] Theorem
⊢ ∀p n. 0 < n ∧ prime p ∧ divides p n ⇒ p ⋲ PRIME_FACTORS n
[FACTORS_prime] Theorem
⊢ ∀p. prime p ⇒ PRIME_FACTORS p = {|p|}
[PRIME_FACTORIZATION] Theorem
⊢ ∀n. 0 < n ⇒
∀b. FINITE_BAG b ∧ (∀x. x ⋲ b ⇒ prime x) ∧ BAG_GEN_PROD b 1 = n ⇒
b = PRIME_FACTORS n
[PRIME_FACTORS_1] Theorem
⊢ PRIME_FACTORS 1 = {||}
[PRIME_FACTORS_EXIST] Theorem
⊢ ∀n. 0 < n ⇒
∃b. FINITE_BAG b ∧ (∀m. m ⋲ b ⇒ prime m) ∧ n = BAG_GEN_PROD b 1
[PRIME_FACTORS_EXP] Theorem
⊢ ∀p e. prime p ⇒ PRIME_FACTORS (p ** e) p = e
[PRIME_FACTORS_MULT] Theorem
⊢ ∀a b.
0 < a ∧ 0 < b ⇒
PRIME_FACTORS (a * b) = PRIME_FACTORS a ⊎ PRIME_FACTORS b
[PRIME_FACTOR_DIVIDES] Theorem
⊢ ∀x n. 0 < n ∧ x ⋲ PRIME_FACTORS n ⇒ divides x n
[UNIQUE_PRIME_FACTORS] Theorem
⊢ ∀n b1 b2.
(FINITE_BAG b1 ∧ (∀m. m ⋲ b1 ⇒ prime m) ∧ n = BAG_GEN_PROD b1 1) ∧
FINITE_BAG b2 ∧ (∀m. m ⋲ b2 ⇒ prime m) ∧ n = BAG_GEN_PROD b2 1 ⇒
b1 = b2
*)
end
HOL 4, Kananaskis-14