Structure powserTheory


Source File Identifier index Theory binding index

signature powserTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val diffs : thm
  
  (*  Theorems  *)
    val DIFFS_EQUIV : thm
    val DIFFS_LEMMA : thm
    val DIFFS_LEMMA2 : thm
    val DIFFS_NEG : thm
    val POWDIFF : thm
    val POWDIFF_LEMMA : thm
    val POWREV : thm
    val POWSER_INSIDE : thm
    val POWSER_INSIDEA : thm
    val TERMDIFF : thm
    val TERMDIFF_LEMMA1 : thm
    val TERMDIFF_LEMMA2 : thm
    val TERMDIFF_LEMMA3 : thm
    val TERMDIFF_LEMMA4 : thm
    val TERMDIFF_LEMMA5 : thm
  
  val powser_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [lim] Parent theory of "powser"
   
   [diffs]  Definition
      
      ⊢ ∀c. diffs c = (λn. &SUC n * c (SUC n))
   
   [DIFFS_EQUIV]  Theorem
      
      ⊢ ∀c x.
          summable (λn. diffs c n * x pow n) ⇒
          (λn. &n * (c n * x pow (n − 1))) sums
          suminf (λn. diffs c n * x pow n)
   
   [DIFFS_LEMMA]  Theorem
      
      ⊢ ∀n c x.
          sum (0,n) (λn. diffs c n * x pow n) =
          sum (0,n) (λn. &n * (c n * x pow (n − 1))) +
          &n * (c n * x pow (n − 1))
   
   [DIFFS_LEMMA2]  Theorem
      
      ⊢ ∀n c x.
          sum (0,n) (λn. &n * (c n * x pow (n − 1))) =
          sum (0,n) (λn. diffs c n * x pow n) − &n * (c n * x pow (n − 1))
   
   [DIFFS_NEG]  Theorem
      
      ⊢ ∀c. diffs (λn. -c n) = (λn. -diffs c n)
   
   [POWDIFF]  Theorem
      
      ⊢ ∀n x y.
          x pow SUC n − y pow SUC n =
          (x − y) * sum (0,SUC n) (λp. x pow p * y pow (n − p))
   
   [POWDIFF_LEMMA]  Theorem
      
      ⊢ ∀n x y.
          sum (0,SUC n) (λp. x pow p * y pow (SUC n − p)) =
          y * sum (0,SUC n) (λp. x pow p * y pow (n − p))
   
   [POWREV]  Theorem
      
      ⊢ ∀n x y.
          sum (0,SUC n) (λp. x pow p * y pow (n − p)) =
          sum (0,SUC n) (λp. x pow (n − p) * y pow p)
   
   [POWSER_INSIDE]  Theorem
      
      ⊢ ∀f x z.
          summable (λn. f n * x pow n) ∧ abs z < abs x ⇒
          summable (λn. f n * z pow n)
   
   [POWSER_INSIDEA]  Theorem
      
      ⊢ ∀f x z.
          summable (λn. f n * x pow n) ∧ abs z < abs x ⇒
          summable (λn. abs (f n) * z pow n)
   
   [TERMDIFF]  Theorem
      
      ⊢ ∀c k' x.
          summable (λn. c n * k' pow n) ∧
          summable (λn. diffs c n * k' pow n) ∧
          summable (λn. diffs (diffs c) n * k' pow n) ∧ abs x < abs k' ⇒
          ((λx. suminf (λn. c n * x pow n)) diffl
           suminf (λn. diffs c n * x pow n)) x
   
   [TERMDIFF_LEMMA1]  Theorem
      
      ⊢ ∀m z h.
          sum (0,m) (λp. (z + h) pow (m − p) * z pow p − z pow m) =
          sum (0,m) (λp. z pow p * ((z + h) pow (m − p) − z pow (m − p)))
   
   [TERMDIFF_LEMMA2]  Theorem
      
      ⊢ ∀z h n.
          h ≠ 0 ⇒
          ((z + h) pow n − z pow n) / h − &n * z pow (n − 1) =
          h *
          sum (0,n − 1)
            (λp.
                 z pow p *
                 sum (0,n − 1 − p)
                   (λq. (z + h) pow q * z pow (n − 2 − p − q)))
   
   [TERMDIFF_LEMMA3]  Theorem
      
      ⊢ ∀z h n k'.
          h ≠ 0 ∧ abs z ≤ k' ∧ abs (z + h) ≤ k' ⇒
          abs (((z + h) pow n − z pow n) / h − &n * z pow (n − 1)) ≤
          &n * (&(n − 1) * (k' pow (n − 2) * abs h))
   
   [TERMDIFF_LEMMA4]  Theorem
      
      ⊢ ∀f k' k.
          0 < k ∧ (∀h. 0 < abs h ∧ abs h < k ⇒ abs (f h) ≤ k' * abs h) ⇒
          (f -> 0) 0
   
   [TERMDIFF_LEMMA5]  Theorem
      
      ⊢ ∀f g k.
          0 < k ∧ summable f ∧
          (∀h. 0 < abs h ∧ abs h < k ⇒ ∀n. abs (g h n) ≤ f n * abs h) ⇒
          ((λh. suminf (g h)) -> 0) 0
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14