Structure ordNotationSemanticsTheory
signature ordNotationSemanticsTheory =
sig
type thm = Thm.thm
(* Definitions *)
val ordModel_def : thm
(* Theorems *)
val WF_ord_less : thm
val addL_disappears : thm
val add_disappears_kexp : thm
val add_nat1_disappears : thm
val add_nat1_disappears_kexp : thm
val better_ord_mult_def : thm
val better_pmult_def : thm
val is_ord_expt : thm
val kexp_lt : thm
val kexp_mult : thm
val kexp_sum_times_nat : thm
val model_expt : thm
val mvjar_lemma3 : thm
val mvjar_lemma4 : thm
val mvjar_lemma5 : thm
val mvjar_theorem10 : thm
val nat_times_omega : thm
val notation_exists : thm
val oless_0 : thm
val oless_0a : thm
val oless_modelled : thm
val oless_total : thm
val oless_x_End : thm
val ordModel_11 : thm
val ordModel_BIJ : thm
val ordModel_lt_epsilon0 : thm
val ord_add_correct : thm
val ord_less_expt_monotone : thm
val ord_less_modelled : thm
val ord_less_models_ordlt : thm
val ord_mult_correct : thm
val osyntax_EQ_0 : thm
val tail_dominated : thm
val ordNotationSemantics_grammars : type_grammar.grammar * term_grammar.grammar
(*
[ordinal] Parent theory of "ordNotationSemantics"
[ordinalNotation] Parent theory of "ordNotationSemantics"
[ordModel_def] Definition
⊢ (∀n. ⟦End n⟧ = &n) ∧ ∀e c t. ⟦Plus e c t⟧ = ω ** ⟦e⟧ * &c + ⟦t⟧
[WF_ord_less] Theorem
⊢ WF ord_less
[addL_disappears] Theorem
⊢ ∀e a. a < ω ** e ⇒ (a + ω ** e = ω ** e)
[add_disappears_kexp] Theorem
⊢ e ≠ 0 ∧ 0 < k ∧ a < ω ** e ⇒ (a + ω ** e * &k = ω ** e * &k)
[add_nat1_disappears] Theorem
⊢ ω ≤ a ⇒ (&n + a = a)
[add_nat1_disappears_kexp] Theorem
⊢ e ≠ 0 ∧ 0 < k ⇒ (&n + ω ** e * &k = ω ** e * &k)
[better_ord_mult_def] Theorem
⊢ ord_mult a (Plus be bc bt) =
if a = End 0 then End 0
else Plus (ord_add (expt a) be) bc (ord_mult a bt)
[better_pmult_def] Theorem
⊢ pmult a (Plus be bc bt) n =
if a = End 0 then End 0
else
(let
m = cf2 (expt a) be n
in
Plus (padd (expt a) be m) bc (pmult a bt m))
[is_ord_expt] Theorem
⊢ is_ord e ⇒ is_ord (expt e)
[kexp_lt] Theorem
⊢ e1 < e2 ⇒ ω ** e1 * &k < ω ** e2
[kexp_mult] Theorem
⊢ ∀e2 e1 c t.
0 < e2 ∧ t < ω ** e1 ∧ 0 < c ⇒
((ω ** e1 * &c + t) * ω ** e2 = ω ** (e1 + e2))
[kexp_sum_times_nat] Theorem
⊢ ∀c2 c t e.
0 < c2 ∧ 0 < c ∧ t < ω ** e ⇒
((ω ** e * &c + t) * &c2 = ω ** e * &(c * c2) + t)
[model_expt] Theorem
⊢ is_ord a ⇒ (⟦expt a⟧ = if a = End 0 then 0 else olog ⟦a⟧)
[mvjar_lemma3] Theorem
⊢ ord_less d b ⇒ cf1 a b ≤ cf1 a d
[mvjar_lemma4] Theorem
⊢ ∀a n b. n ≤ cf1 a b ⇒ (cf1 a b = cf2 a b n)
[mvjar_lemma5] Theorem
⊢ padd a b (cf1 a b) = ord_add a b
[mvjar_theorem10] Theorem
⊢ ∀n a b.
is_ord a ∧ is_ord b ∧ n ≤ cf1 (expt a) (expt b) ⇒
(⟦pmult a b n⟧ = ⟦a⟧ * ⟦b⟧)
[nat_times_omega] Theorem
⊢ ∀e m. 0 < m ∧ 0 < e ⇒ (&m * ω ** e = ω ** e)
[notation_exists] Theorem
⊢ ∀a. a < ε₀ ⇒
∃n. is_ord n ∧ (⟦n⟧ = a) ∧ (0 < a ⇒ (⟦expt n⟧ = olog a))
[oless_0] Theorem
⊢ ∀n. oless n (End 0) ⇔ F
[oless_0a] Theorem
⊢ oless (End 0) n ⇔ n ≠ End 0
[oless_modelled] Theorem
⊢ is_ord x ∧ is_ord y ⇒ (oless x y ⇔ ⟦x⟧ < ⟦y⟧)
[oless_total] Theorem
⊢ ∀m n. oless m n ∨ oless n m ∨ (m = n)
[oless_x_End] Theorem
⊢ oless x (End n) ⇔ ∃m. (x = End m) ∧ m < n
[ordModel_11] Theorem
⊢ is_ord n1 ∧ is_ord n2 ⇒ ((⟦n1⟧ = ⟦n2⟧) ⇔ (n1 = n2))
[ordModel_BIJ] Theorem
⊢ BIJ ordModel {n | is_ord n} {a | a < ε₀}
[ordModel_lt_epsilon0] Theorem
⊢ ∀a. ⟦a⟧ < ε₀
[ord_add_correct] Theorem
⊢ ∀x y. is_ord x ∧ is_ord y ⇒ (⟦ord_add x y⟧ = ⟦x⟧ + ⟦y⟧)
[ord_less_expt_monotone] Theorem
⊢ ord_less x y ⇒ (expt x = expt y) ∨ ord_less (expt x) (expt y)
[ord_less_modelled] Theorem
⊢ ord_less x y ⇔ is_ord x ∧ is_ord y ∧ ⟦x⟧ < ⟦y⟧
[ord_less_models_ordlt] Theorem
⊢ ∀x. is_ord x ⇒
(∀y. oless x y ∧ is_ord y ⇒ ⟦x⟧ < ⟦y⟧) ∧
(¬finp x ⇒ ⟦tail x⟧ < ω ** ⟦expt x⟧)
[ord_mult_correct] Theorem
⊢ ∀x y. is_ord x ∧ is_ord y ⇒ (⟦ord_mult x y⟧ = ⟦x⟧ * ⟦y⟧)
[osyntax_EQ_0] Theorem
⊢ ∀a. is_ord a ⇒ ((⟦a⟧ = 0) ⇔ (a = End 0))
[tail_dominated] Theorem
⊢ ⟦expt t⟧ < ⟦e⟧ ∧ is_ord e ∧ is_ord t ⇒ ⟦t⟧ < ω ** ⟦e⟧
*)
end
HOL 4, Kananaskis-14