Structure netsTheory


Source File Identifier index Theory binding index

signature netsTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val bounded : thm
    val dorder : thm
    val tends : thm
    val tendsto : thm
  
  (*  Theorems  *)
    val DORDER_LEMMA : thm
    val DORDER_NGE : thm
    val DORDER_TENDSTO : thm
    val LIM_TENDS : thm
    val LIM_TENDS2 : thm
    val MR1_BOUNDED : thm
    val MTOP_TENDS : thm
    val MTOP_TENDS_UNIQ : thm
    val NET_ABS : thm
    val NET_ADD : thm
    val NET_CONV_BOUNDED : thm
    val NET_CONV_IBOUNDED : thm
    val NET_CONV_NZ : thm
    val NET_DIV : thm
    val NET_INV : thm
    val NET_LE : thm
    val NET_MUL : thm
    val NET_NEG : thm
    val NET_NULL : thm
    val NET_NULL_ADD : thm
    val NET_NULL_CMUL : thm
    val NET_NULL_MUL : thm
    val NET_SUB : thm
    val SEQ_TENDS : thm
  
  val nets_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [metric] Parent theory of "nets"
   
   [bounded]  Definition
      
      ⊢ ∀m g f.
          bounded (m,g) f ⇔ ∃k x N. g N N ∧ ∀n. g n N ⇒ dist m (f n,x) < k
   
   [dorder]  Definition
      
      ⊢ ∀g. dorder g ⇔
            ∀x y. g x x ∧ g y y ⇒ ∃z. g z z ∧ ∀w. g w z ⇒ g w x ∧ g w y
   
   [tends]  Definition
      
      ⊢ ∀s l top g.
          (s tends l) (top,g) ⇔
          ∀N. neigh top (N,l) ⇒ ∃n. g n n ∧ ∀m. g m n ⇒ N (s m)
   
   [tendsto]  Definition
      
      ⊢ ∀m x y z.
          tendsto (m,x) y z ⇔
          0 < dist m (x,y) ∧ dist m (x,y) ≤ dist m (x,z)
   
   [DORDER_LEMMA]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀P Q.
              (∃n. g n n ∧ ∀m. g m n ⇒ P m) ∧ (∃n. g n n ∧ ∀m. g m n ⇒ Q m) ⇒
              ∃n. g n n ∧ ∀m. g m n ⇒ P m ∧ Q m
   
   [DORDER_NGE]  Theorem
      
      ⊢ dorder $>=
   
   [DORDER_TENDSTO]  Theorem
      
      ⊢ ∀m x. dorder (tendsto (m,x))
   
   [LIM_TENDS]  Theorem
      
      ⊢ ∀m1 m2 f x0 y0.
          limpt (mtop m1) x0 𝕌(:α) ⇒
          ((f tends y0) (mtop m2,tendsto (m1,x0)) ⇔
           ∀e. 0 < e ⇒
               ∃d. 0 < d ∧
                   ∀x. 0 < dist m1 (x,x0) ∧ dist m1 (x,x0) ≤ d ⇒
                       dist m2 (f x,y0) < e)
   
   [LIM_TENDS2]  Theorem
      
      ⊢ ∀m1 m2 f x0 y0.
          limpt (mtop m1) x0 𝕌(:α) ⇒
          ((f tends y0) (mtop m2,tendsto (m1,x0)) ⇔
           ∀e. 0 < e ⇒
               ∃d. 0 < d ∧
                   ∀x. 0 < dist m1 (x,x0) ∧ dist m1 (x,x0) < d ⇒
                       dist m2 (f x,y0) < e)
   
   [MR1_BOUNDED]  Theorem
      
      ⊢ ∀g f. bounded (mr1,g) f ⇔ ∃k N. g N N ∧ ∀n. g n N ⇒ abs (f n) < k
   
   [MTOP_TENDS]  Theorem
      
      ⊢ ∀d g x x0.
          (x tends x0) (mtop d,g) ⇔
          ∀e. 0 < e ⇒ ∃n. g n n ∧ ∀m. g m n ⇒ dist d (x m,x0) < e
   
   [MTOP_TENDS_UNIQ]  Theorem
      
      ⊢ ∀g d.
          dorder g ⇒
          (x tends x0) (mtop d,g) ∧ (x tends x1) (mtop d,g) ⇒
          (x0 = x1)
   
   [NET_ABS]  Theorem
      
      ⊢ ∀g x x0.
          (x tends x0) (mtop mr1,g) ⇒
          ((λn. abs (x n)) tends abs x0) (mtop mr1,g)
   
   [NET_ADD]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x x0 y y0.
              (x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
              ((λn. x n + y n) tends (x0 + y0)) (mtop mr1,g)
   
   [NET_CONV_BOUNDED]  Theorem
      
      ⊢ ∀g x x0. (x tends x0) (mtop mr1,g) ⇒ bounded (mr1,g) x
   
   [NET_CONV_IBOUNDED]  Theorem
      
      ⊢ ∀g x x0.
          (x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
          bounded (mr1,g) (λn. (x n)⁻¹)
   
   [NET_CONV_NZ]  Theorem
      
      ⊢ ∀g x x0.
          (x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
          ∃N. g N N ∧ ∀n. g n N ⇒ x n ≠ 0
   
   [NET_DIV]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x x0 y y0.
              (x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ∧
              y0 ≠ 0 ⇒
              ((λn. x n / y n) tends (x0 / y0)) (mtop mr1,g)
   
   [NET_INV]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x x0.
              (x tends x0) (mtop mr1,g) ∧ x0 ≠ 0 ⇒
              ((λn. (x n)⁻¹) tends x0⁻¹) (mtop mr1,g)
   
   [NET_LE]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x x0 y y0.
              (x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ∧
              (∃N. g N N ∧ ∀n. g n N ⇒ x n ≤ y n) ⇒
              x0 ≤ y0
   
   [NET_MUL]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x y x0 y0.
              (x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
              ((λn. x n * y n) tends (x0 * y0)) (mtop mr1,g)
   
   [NET_NEG]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x x0.
              (x tends x0) (mtop mr1,g) ⇔
              ((λn. -x n) tends -x0) (mtop mr1,g)
   
   [NET_NULL]  Theorem
      
      ⊢ ∀g x x0.
          (x tends x0) (mtop mr1,g) ⇔ ((λn. x n − x0) tends 0) (mtop mr1,g)
   
   [NET_NULL_ADD]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x y.
              (x tends 0) (mtop mr1,g) ∧ (y tends 0) (mtop mr1,g) ⇒
              ((λn. x n + y n) tends 0) (mtop mr1,g)
   
   [NET_NULL_CMUL]  Theorem
      
      ⊢ ∀g k x.
          (x tends 0) (mtop mr1,g) ⇒ ((λn. k * x n) tends 0) (mtop mr1,g)
   
   [NET_NULL_MUL]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x y.
              bounded (mr1,g) x ∧ (y tends 0) (mtop mr1,g) ⇒
              ((λn. x n * y n) tends 0) (mtop mr1,g)
   
   [NET_SUB]  Theorem
      
      ⊢ ∀g. dorder g ⇒
            ∀x x0 y y0.
              (x tends x0) (mtop mr1,g) ∧ (y tends y0) (mtop mr1,g) ⇒
              ((λn. x n − y n) tends (x0 − y0)) (mtop mr1,g)
   
   [SEQ_TENDS]  Theorem
      
      ⊢ ∀d x x0.
          (x tends x0) (mtop d,$>=) ⇔
          ∀e. 0 < e ⇒ ∃N. ∀n. n ≥ N ⇒ dist d (x n,x0) < e
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14