Structure metricTheory


Source File Identifier index Theory binding index

signature metricTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val ball : thm
    val ismet : thm
    val metric_TY_DEF : thm
    val metric_tybij : thm
    val mr1 : thm
    val mtop : thm
  
  (*  Theorems  *)
    val BALL_NEIGH : thm
    val BALL_OPEN : thm
    val ISMET_R1 : thm
    val METRIC_ISMET : thm
    val METRIC_NZ : thm
    val METRIC_POS : thm
    val METRIC_SAME : thm
    val METRIC_SYM : thm
    val METRIC_TRIANGLE : thm
    val METRIC_ZERO : thm
    val MR1_ADD : thm
    val MR1_ADD_LT : thm
    val MR1_ADD_POS : thm
    val MR1_BETWEEN1 : thm
    val MR1_DEF : thm
    val MR1_LIMPT : thm
    val MR1_SUB : thm
    val MR1_SUB_LE : thm
    val MR1_SUB_LT : thm
    val MTOP_LIMPT : thm
    val MTOP_OPEN : thm
    val mtop_istopology : thm
  
  val metric_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [real] Parent theory of "metric"
   
   [topology] Parent theory of "metric"
   
   [ball]  Definition
      
      ⊢ ∀m x e. metric$B m (x,e) = (λy. dist m (x,y) < e)
   
   [ismet]  Definition
      
      ⊢ ∀m. ismet m ⇔
            (∀x y. (m (x,y) = 0) ⇔ (x = y)) ∧
            ∀x y z. m (y,z) ≤ m (x,y) + m (x,z)
   
   [metric_TY_DEF]  Definition
      
      ⊢ ∃rep. TYPE_DEFINITION ismet rep
   
   [metric_tybij]  Definition
      
      ⊢ (∀a. metric (dist a) = a) ∧ ∀r. ismet r ⇔ (dist (metric r) = r)
   
   [mr1]  Definition
      
      ⊢ mr1 = metric (λ(x,y). abs (y − x))
   
   [mtop]  Definition
      
      ⊢ ∀m. mtop m =
            topology
              (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
   
   [BALL_NEIGH]  Theorem
      
      ⊢ ∀m x e. 0 < e ⇒ neigh (mtop m) (metric$B m (x,e),x)
   
   [BALL_OPEN]  Theorem
      
      ⊢ ∀m x e. 0 < e ⇒ open_in (mtop m) (metric$B m (x,e))
   
   [ISMET_R1]  Theorem
      
      ⊢ ismet (λ(x,y). abs (y − x))
   
   [METRIC_ISMET]  Theorem
      
      ⊢ ∀m. ismet (dist m)
   
   [METRIC_NZ]  Theorem
      
      ⊢ ∀m x y. x ≠ y ⇒ 0 < dist m (x,y)
   
   [METRIC_POS]  Theorem
      
      ⊢ ∀m x y. 0 ≤ dist m (x,y)
   
   [METRIC_SAME]  Theorem
      
      ⊢ ∀m x. dist m (x,x) = 0
   
   [METRIC_SYM]  Theorem
      
      ⊢ ∀m x y. dist m (x,y) = dist m (y,x)
   
   [METRIC_TRIANGLE]  Theorem
      
      ⊢ ∀m x y z. dist m (x,z) ≤ dist m (x,y) + dist m (y,z)
   
   [METRIC_ZERO]  Theorem
      
      ⊢ ∀m x y. (dist m (x,y) = 0) ⇔ (x = y)
   
   [MR1_ADD]  Theorem
      
      ⊢ ∀x d. dist mr1 (x,x + d) = abs d
   
   [MR1_ADD_LT]  Theorem
      
      ⊢ ∀x d. 0 < d ⇒ (dist mr1 (x,x + d) = d)
   
   [MR1_ADD_POS]  Theorem
      
      ⊢ ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x + d) = d)
   
   [MR1_BETWEEN1]  Theorem
      
      ⊢ ∀x y z. x < z ∧ dist mr1 (x,y) < z − x ⇒ y < z
   
   [MR1_DEF]  Theorem
      
      ⊢ ∀x y. dist mr1 (x,y) = abs (y − x)
   
   [MR1_LIMPT]  Theorem
      
      ⊢ ∀x. limpt (mtop mr1) x 𝕌(:real)
   
   [MR1_SUB]  Theorem
      
      ⊢ ∀x d. dist mr1 (x,x − d) = abs d
   
   [MR1_SUB_LE]  Theorem
      
      ⊢ ∀x d. 0 ≤ d ⇒ (dist mr1 (x,x − d) = d)
   
   [MR1_SUB_LT]  Theorem
      
      ⊢ ∀x d. 0 < d ⇒ (dist mr1 (x,x − d) = d)
   
   [MTOP_LIMPT]  Theorem
      
      ⊢ ∀m x S'.
          limpt (mtop m) x S' ⇔
          ∀e. 0 < e ⇒ ∃y. x ≠ y ∧ S' y ∧ dist m (x,y) < e
   
   [MTOP_OPEN]  Theorem
      
      ⊢ ∀S' m.
          open_in (mtop m) S' ⇔
          ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y
   
   [mtop_istopology]  Theorem
      
      ⊢ ∀m. istopology
              (λS'. ∀x. S' x ⇒ ∃e. 0 < e ∧ ∀y. dist m (x,y) < e ⇒ S' y)
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14