Structure martingaleTheory
signature martingaleTheory =
sig
type thm = Thm.thm
(* Definitions *)
val exhausting_sequence_def : thm
val fcp_sigma_def : thm
val filtered_measure_space_def : thm
val filtration_def : thm
val general_filtered_measure_space_def : thm
val general_filtration_def : thm
val general_martingale_def : thm
val general_sigma_def : thm
val has_exhausting_sequence : thm
val infty_sigma_algebra_def : thm
val lborel_2d_def : thm
val martingale_def : thm
val prod_measure_def : thm
val sigma_finite_filtered_measure_space_def : thm
val sigma_finite_general_filtered_measure_space_def : thm
val sub_martingale_def : thm
val sub_sigma_algebra_def : thm
val super_martingale_def : thm
val upwards_filtering_def : thm
(* Theorems *)
val EXISTENCE_OF_PROD_MEASURE : thm
val EXISTENCE_OF_PROD_MEASURE' : thm
val FILTRATION : thm
val FILTRATION_BOUNDED : thm
val FILTRATION_MONO : thm
val FILTRATION_SUBSETS : thm
val FUBINI : thm
val FUBINI' : thm
val Fubini : thm
val Fubini' : thm
val INFTY_SIGMA_ALGEBRA_BOUNDED : thm
val INFTY_SIGMA_ALGEBRA_MAXIMAL : thm
val IN_MEASURABLE_BOREL_FROM_PROD_SIGMA : thm
val MARTINGALE_BOTH_SUB_SUPER : thm
val POSET_NUM_LE : thm
val PROD_SIGMA_OF_GENERATOR : thm
val SIGMA_FINITE_FILTERED_MEASURE_SPACE_I : thm
val SUB_SIGMA_ALGEBRA_ANTISYM : thm
val SUB_SIGMA_ALGEBRA_MEASURE_SPACE : thm
val SUB_SIGMA_ALGEBRA_ORDER : thm
val SUB_SIGMA_ALGEBRA_REFL : thm
val SUB_SIGMA_ALGEBRA_TRANS : thm
val TONELLI : thm
val UNIQUENESS_OF_PROD_MEASURE : thm
val UNIQUENESS_OF_PROD_MEASURE' : thm
val exhausting_sequence_CROSS : thm
val exhausting_sequence_alt : thm
val exhausting_sequence_cross : thm
val exhausting_sequence_general_cross : thm
val existence_of_prod_measure : thm
val existence_of_prod_measure_general : thm
val fcp_sigma_alt : thm
val filtered_measure_space_alt : thm
val filtration_alt : thm
val general_filtered_measure_space_alt : thm
val general_sigma_of_generator : thm
val has_exhausting_sequence_alt : thm
val has_exhausting_sequence_def : thm
val integrable_cong_measure : thm
val integrable_cong_measure' : thm
val integral_cong_measure : thm
val integral_cong_measure' : thm
val integral_distr : thm
val lborel_2d_prod_measure : thm
val measure_space_prod_measure : thm
val pos_fn_integral_cong_measure : thm
val pos_fn_integral_cong_measure' : thm
val pos_fn_integral_distr : thm
val prod_sigma_alt : thm
val prod_sigma_of_generator : thm
val sigma_algebra_general_sigma : thm
val sigma_algebra_prod_sigma : thm
val sigma_algebra_prod_sigma' : thm
val sigma_finite_alt : thm
val sigma_finite_alt_exhausting_sequence : thm
val sigma_finite_filtered_measure_space_alt : thm
val sigma_finite_has_exhausting_sequence : thm
val uniqueness_of_prod_measure : thm
val uniqueness_of_prod_measure' : thm
val uniqueness_of_prod_measure_general : thm
val uniqueness_of_prod_measure_general' : thm
val martingale_grammars : type_grammar.grammar * term_grammar.grammar
(*
[lebesgue] Parent theory of "martingale"
[poset] Parent theory of "martingale"
[exhausting_sequence_def] Definition
β’ βa f.
exhausting_sequence a f β
f β (π(:num) β subsets a) β§ (βn. f n β f (SUC n)) β§
BIGUNION (IMAGE f π(:num)) = space a
[fcp_sigma_def] Definition
β’ βa b.
fcp_sigma a b =
sigma (fcp_cross (space a) (space b))
(fcp_prod (subsets a) (subsets b))
[filtered_measure_space_def] Definition
β’ βsp sts m a.
filtered_measure_space (sp,sts,m) a β
measure_space (sp,sts,m) β§ filtration (sp,sts) a
[filtration_def] Definition
β’ βA a.
filtration A a β
(βn. sub_sigma_algebra (a n) A) β§
βi j. i β€ j β subsets (a i) β subsets (a j)
[general_filtered_measure_space_def] Definition
β’ βJ R sp sts m a.
filtered_measure_space (J,R) (sp,sts,m) a β
measure_space (sp,sts,m) β§ filtration (J,R) (sp,sts) a
[general_filtration_def] Definition
β’ βJ R A a.
filtration (J,R) A a β
poset (J,R) β§ (βn. n β J β sub_sigma_algebra (a n) A) β§
βi j. i β J β§ j β J β§ R i j β subsets (a i) β subsets (a j)
[general_martingale_def] Definition
β’ βJ R m a u.
martingale (J,R) m a u β
sigma_finite_filtered_measure_space (J,R) m a β§
(βn. n β J β integrable m (u n)) β§
βi j s.
i β J β§ j β J β§ R i j β§ s β subsets (a i) β
β« m (Ξ»x. u i x * π s x) = β« m (Ξ»x. u j x * π s x)
[general_sigma_def] Definition
β’ βcons A B.
general_sigma cons A B =
sigma (general_cross cons (space A) (space B))
(general_prod cons (subsets A) (subsets B))
[has_exhausting_sequence] Definition
β’ βa. has_exhausting_sequence a β βf. exhausting_sequence a f
[infty_sigma_algebra_def] Definition
β’ βsp a.
infty_sigma_algebra sp a =
sigma sp (BIGUNION (IMAGE (Ξ»i. subsets (a i)) π(:num)))
[lborel_2d_def] Definition
β’ sigma_finite_measure_space lborel_2d β§
m_space lborel_2d = π(:real) Γ π(:real) β§
measurable_sets lborel_2d =
subsets ((π(:real),subsets borel) Γ (π(:real),subsets borel)) β§
(βs t.
s β subsets borel β§ t β subsets borel β
measure lborel_2d (s Γ t) = lambda s * lambda t) β§
βs. s β measurable_sets lborel_2d β
(βx. (Ξ»y. π s (x,y)) β Borel_measurable borel) β§
(βy. (Ξ»x. π s (x,y)) β Borel_measurable borel) β§
(Ξ»y. β«βΊ lborel (Ξ»x. π s (x,y))) β Borel_measurable borel β§
(Ξ»x. β«βΊ lborel (Ξ»y. π s (x,y))) β Borel_measurable borel β§
measure lborel_2d s = β«βΊ lborel (Ξ»y. β«βΊ lborel (Ξ»x. π s (x,y))) β§
measure lborel_2d s = β«βΊ lborel (Ξ»x. β«βΊ lborel (Ξ»y. π s (x,y)))
[martingale_def] Definition
β’ βm a u.
martingale m a u β
sigma_finite_filtered_measure_space m a β§
(βn. integrable m (u n)) β§
βn s.
s β subsets (a n) β
β« m (Ξ»x. u (SUC n) x * π s x) = β« m (Ξ»x. u n x * π s x)
[prod_measure_def] Definition
β’ βm1 m2.
m1 Γ m2 =
(m_space m1 Γ m_space m2,
subsets
((m_space m1,measurable_sets m1) Γ
(m_space m2,measurable_sets m2)),
(Ξ»s. β«βΊ m2 (Ξ»y. β«βΊ m1 (Ξ»x. π s (x,y)))))
[sigma_finite_filtered_measure_space_def] Definition
β’ βsp sts m a.
sigma_finite_filtered_measure_space (sp,sts,m) a β
filtered_measure_space (sp,sts,m) a β§
sigma_finite (sp,subsets (a 0),m)
[sigma_finite_general_filtered_measure_space_def] Definition
β’ βJ R sp sts m a.
sigma_finite_filtered_measure_space (J,R) (sp,sts,m) a β
filtered_measure_space (J,R) (sp,sts,m) a β§
βn. n β J β sigma_finite (sp,subsets (a n),m)
[sub_martingale_def] Definition
β’ βm a u.
sub_martingale m a u β
sigma_finite_filtered_measure_space m a β§
(βn. integrable m (u n)) β§
βn s.
s β subsets (a n) β
β« m (Ξ»x. u n x * π s x) β€ β« m (Ξ»x. u (SUC n) x * π s x)
[sub_sigma_algebra_def] Definition
β’ βa b.
sub_sigma_algebra a b β
sigma_algebra a β§ sigma_algebra b β§ space a = space b β§
subsets a β subsets b
[super_martingale_def] Definition
β’ βm a u.
super_martingale m a u β
sigma_finite_filtered_measure_space m a β§
(βn. integrable m (u n)) β§
βn s.
s β subsets (a n) β
β« m (Ξ»x. u (SUC n) x * π s x) β€ β« m (Ξ»x. u n x * π s x)
[upwards_filtering_def] Definition
β’ βJ R.
upwards_filtering (J,R) β
βa b. a β J β§ b β J β βc. c β J β§ R a c β§ R b c
[EXISTENCE_OF_PROD_MEASURE] Theorem
β’ βX Y A B u v m0.
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
(βs t. s β A β§ t β B β m0 (s Γ t) = u s * v t) β
(βs. s β subsets ((X,A) Γ (Y,B)) β
(βx. x β X β (Ξ»y. π s (x,y)) β Borel_measurable (Y,B)) β§
(βy. y β Y β (Ξ»x. π s (x,y)) β Borel_measurable (X,A)) β§
(Ξ»y. β«βΊ (X,A,u) (Ξ»x. π s (x,y))) β Borel_measurable (Y,B) β§
(Ξ»x. β«βΊ (Y,B,v) (Ξ»y. π s (x,y))) β Borel_measurable (X,A)) β§
βm. sigma_finite_measure_space (X Γ Y,subsets ((X,A) Γ (Y,B)),m) β§
(βs. s β prod_sets A B β m s = m0 s) β§
βs. s β subsets ((X,A) Γ (Y,B)) β
m s = β«βΊ (Y,B,v) (Ξ»y. β«βΊ (X,A,u) (Ξ»x. π s (x,y))) β§
m s = β«βΊ (X,A,u) (Ξ»x. β«βΊ (Y,B,v) (Ξ»y. π s (x,y)))
[EXISTENCE_OF_PROD_MEASURE'] Theorem
β’ βX Y A B u v m0.
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
(βs t. s β A β§ t β B β m0 (s Γ t) = u s * v t) β
(βs. s β subsets ((X,A) Γ (Y,B)) β
(βx. x β X β (Ξ»y. π s (x,y)) β Borel_measurable (Y,B)) β§
(βy. y β Y β (Ξ»x. π s (x,y)) β Borel_measurable (X,A)) β§
(Ξ»y. β« (X,A,u) (Ξ»x. π s (x,y))) β Borel_measurable (Y,B) β§
(Ξ»x. β« (Y,B,v) (Ξ»y. π s (x,y))) β Borel_measurable (X,A)) β§
βm. sigma_finite_measure_space (X Γ Y,subsets ((X,A) Γ (Y,B)),m) β§
(βs. s β prod_sets A B β m s = m0 s) β§
βs. s β subsets ((X,A) Γ (Y,B)) β
m s = β« (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. π s (x,y))) β§
m s = β« (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. π s (x,y)))
[FILTRATION] Theorem
β’ βA a.
filtration A a β
(βn. sub_sigma_algebra (a n) A) β§
(βn. subsets (a n) β subsets A) β§
βi j. i β€ j β subsets (a i) β subsets (a j)
[FILTRATION_BOUNDED] Theorem
β’ βA a. filtration A a β βn. sub_sigma_algebra (a n) A
[FILTRATION_MONO] Theorem
β’ βA a. filtration A a β βi j. i β€ j β subsets (a i) β subsets (a j)
[FILTRATION_SUBSETS] Theorem
β’ βA a. filtration A a β βn. subsets (a n) β subsets A
[FUBINI] Theorem
β’ βX Y A B u v f.
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
f β Borel_measurable ((X,A) Γ (Y,B)) β§
(β«βΊ ((X,A,u) Γ (Y,B,v)) (abs β f) β +β β¨
β«βΊ (Y,B,v) (Ξ»y. β«βΊ (X,A,u) (Ξ»x. (abs β f) (x,y))) β +β β¨
β«βΊ (X,A,u) (Ξ»x. β«βΊ (Y,B,v) (Ξ»y. (abs β f) (x,y))) β +β) β
β«βΊ ((X,A,u) Γ (Y,B,v)) (abs β f) β +β β§
β«βΊ (Y,B,v) (Ξ»y. β«βΊ (X,A,u) (Ξ»x. (abs β f) (x,y))) β +β β§
β«βΊ (X,A,u) (Ξ»x. β«βΊ (Y,B,v) (Ξ»y. (abs β f) (x,y))) β +β β§
integrable ((X,A,u) Γ (Y,B,v)) f β§
(AE y::(Y,B,v). integrable (X,A,u) (Ξ»x. f (x,y))) β§
(AE x::(X,A,u). integrable (Y,B,v) (Ξ»y. f (x,y))) β§
integrable (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. f (x,y))) β§
integrable (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. f (x,y))) β§
β« ((X,A,u) Γ (Y,B,v)) f = β« (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. f (x,y))) β§
β« ((X,A,u) Γ (Y,B,v)) f = β« (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. f (x,y)))
[FUBINI'] Theorem
β’ βX Y A B u v f.
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
f β Borel_measurable ((X,A) Γ (Y,B)) β§
(β« ((X,A,u) Γ (Y,B,v)) (abs β f) β +β β¨
β« (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. (abs β f) (x,y))) β +β β¨
β« (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. (abs β f) (x,y))) β +β) β
β« ((X,A,u) Γ (Y,B,v)) (abs β f) β +β β§
β« (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. (abs β f) (x,y))) β +β β§
β« (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. (abs β f) (x,y))) β +β β§
integrable ((X,A,u) Γ (Y,B,v)) f β§
(AE y::(Y,B,v). integrable (X,A,u) (Ξ»x. f (x,y))) β§
(AE x::(X,A,u). integrable (Y,B,v) (Ξ»y. f (x,y))) β§
integrable (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. f (x,y))) β§
integrable (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. f (x,y))) β§
β« ((X,A,u) Γ (Y,B,v)) f = β« (Y,B,v) (Ξ»y. β« (X,A,u) (Ξ»x. f (x,y))) β§
β« ((X,A,u) Γ (Y,B,v)) f = β« (X,A,u) (Ξ»x. β« (Y,B,v) (Ξ»y. f (x,y)))
[Fubini] Theorem
β’ βm1 m2 f.
sigma_finite_measure_space m1 β§ sigma_finite_measure_space m2 β§
f β
Borel_measurable
((m_space m1,measurable_sets m1) Γ
(m_space m2,measurable_sets m2)) β§
(β«βΊ (m1 Γ m2) (abs β f) β +β β¨
β«βΊ m2 (Ξ»y. β«βΊ m1 (Ξ»x. (abs β f) (x,y))) β +β β¨
β«βΊ m1 (Ξ»x. β«βΊ m2 (Ξ»y. (abs β f) (x,y))) β +β) β
β«βΊ (m1 Γ m2) (abs β f) β +β β§
β«βΊ m2 (Ξ»y. β«βΊ m1 (Ξ»x. (abs β f) (x,y))) β +β β§
β«βΊ m1 (Ξ»x. β«βΊ m2 (Ξ»y. (abs β f) (x,y))) β +β β§
integrable (m1 Γ m2) f β§
(AE y::m2. integrable m1 (Ξ»x. f (x,y))) β§
(AE x::m1. integrable m2 (Ξ»y. f (x,y))) β§
integrable m1 (Ξ»x. β« m2 (Ξ»y. f (x,y))) β§
integrable m2 (Ξ»y. β« m1 (Ξ»x. f (x,y))) β§
β« (m1 Γ m2) f = β« m2 (Ξ»y. β« m1 (Ξ»x. f (x,y))) β§
β« (m1 Γ m2) f = β« m1 (Ξ»x. β« m2 (Ξ»y. f (x,y)))
[Fubini'] Theorem
β’ βm1 m2 f.
sigma_finite_measure_space m1 β§ sigma_finite_measure_space m2 β§
f β
Borel_measurable
((m_space m1,measurable_sets m1) Γ
(m_space m2,measurable_sets m2)) β§
(β« (m1 Γ m2) (abs β f) β +β β¨
β« m2 (Ξ»y. β« m1 (Ξ»x. (abs β f) (x,y))) β +β β¨
β« m1 (Ξ»x. β« m2 (Ξ»y. (abs β f) (x,y))) β +β) β
β« (m1 Γ m2) (abs β f) β +β β§
β« m2 (Ξ»y. β« m1 (Ξ»x. (abs β f) (x,y))) β +β β§
β« m1 (Ξ»x. β« m2 (Ξ»y. (abs β f) (x,y))) β +β β§
integrable (m1 Γ m2) f β§
(AE y::m2. integrable m1 (Ξ»x. f (x,y))) β§
(AE x::m1. integrable m2 (Ξ»y. f (x,y))) β§
integrable m1 (Ξ»x. β« m2 (Ξ»y. f (x,y))) β§
integrable m2 (Ξ»y. β« m1 (Ξ»x. f (x,y))) β§
β« (m1 Γ m2) f = β« m2 (Ξ»y. β« m1 (Ξ»x. f (x,y))) β§
β« (m1 Γ m2) f = β« m1 (Ξ»x. β« m2 (Ξ»y. f (x,y)))
[INFTY_SIGMA_ALGEBRA_BOUNDED] Theorem
β’ βA a.
filtration A a β
sub_sigma_algebra (infty_sigma_algebra (space A) a) A
[INFTY_SIGMA_ALGEBRA_MAXIMAL] Theorem
β’ βA a.
filtration A a β
βn. sub_sigma_algebra (a n) (infty_sigma_algebra (space A) a)
[IN_MEASURABLE_BOREL_FROM_PROD_SIGMA] Theorem
β’ βX Y A B f.
sigma_algebra (X,A) β§ sigma_algebra (Y,B) β§
f β Borel_measurable ((X,A) Γ (Y,B)) β
(βy. y β Y β (Ξ»x. f (x,y)) β Borel_measurable (X,A)) β§
βx. x β X β (Ξ»y. f (x,y)) β Borel_measurable (Y,B)
[MARTINGALE_BOTH_SUB_SUPER] Theorem
β’ βm a u.
martingale m a u β sub_martingale m a u β§ super_martingale m a u
[POSET_NUM_LE] Theorem
β’ poset (π(:num),$<=)
[PROD_SIGMA_OF_GENERATOR] Theorem
β’ βX Y E G.
subset_class X E β§ subset_class Y G β§
has_exhausting_sequence (X,E) β§ has_exhausting_sequence (Y,G) β
(X,E) Γ (Y,G) = sigma X E Γ sigma Y G
[SIGMA_FINITE_FILTERED_MEASURE_SPACE_I] Theorem
β’ βsp sts a m.
sigma_finite_filtered_measure_space (sp,sts,m) a β
βn. sigma_finite (sp,subsets (a n),m)
[SUB_SIGMA_ALGEBRA_ANTISYM] Theorem
β’ βa b. sub_sigma_algebra a b β§ sub_sigma_algebra b a β a = b
[SUB_SIGMA_ALGEBRA_MEASURE_SPACE] Theorem
β’ βm a.
measure_space m β§
sub_sigma_algebra a (m_space m,measurable_sets m) β
measure_space (m_space m,subsets a,measure m)
[SUB_SIGMA_ALGEBRA_ORDER] Theorem
β’ Order sub_sigma_algebra
[SUB_SIGMA_ALGEBRA_REFL] Theorem
β’ βa. sigma_algebra a β sub_sigma_algebra a a
[SUB_SIGMA_ALGEBRA_TRANS] Theorem
β’ βa b c.
sub_sigma_algebra a b β§ sub_sigma_algebra b c β
sub_sigma_algebra a c
[TONELLI] Theorem
β’ βX Y A B u v f.
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
f β Borel_measurable ((X,A) Γ (Y,B)) β§ (βs. s β X Γ Y β 0 β€ f s) β
(βy. y β Y β (Ξ»x. f (x,y)) β Borel_measurable (X,A)) β§
(βx. x β X β (Ξ»y. f (x,y)) β Borel_measurable (Y,B)) β§
(Ξ»x. β«βΊ (Y,B,v) (Ξ»y. f (x,y))) β Borel_measurable (X,A) β§
(Ξ»y. β«βΊ (X,A,u) (Ξ»x. f (x,y))) β Borel_measurable (Y,B) β§
β«βΊ ((X,A,u) Γ (Y,B,v)) f =
β«βΊ (Y,B,v) (Ξ»y. β«βΊ (X,A,u) (Ξ»x. f (x,y))) β§
β«βΊ ((X,A,u) Γ (Y,B,v)) f =
β«βΊ (X,A,u) (Ξ»x. β«βΊ (Y,B,v) (Ξ»y. f (x,y)))
[UNIQUENESS_OF_PROD_MEASURE] Theorem
β’ βX Y E G A B u v m m'.
subset_class X E β§ subset_class Y G β§ sigma_finite (X,E,u) β§
sigma_finite (Y,G,v) β§ (βs t. s β E β§ t β E β s β© t β E) β§
(βs t. s β G β§ t β G β s β© t β G) β§ A = sigma X E β§
B = sigma Y G β§ measure_space (X,subsets A,u) β§
measure_space (Y,subsets B,v) β§
measure_space (X Γ Y,subsets (A Γ B),m) β§
measure_space (X Γ Y,subsets (A Γ B),m') β§
(βs t. s β E β§ t β G β m (s Γ t) = u s * v t) β§
(βs t. s β E β§ t β G β m' (s Γ t) = u s * v t) β
βx. x β subsets (A Γ B) β m x = m' x
[UNIQUENESS_OF_PROD_MEASURE'] Theorem
β’ βX Y A B u v m m'.
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
measure_space (X Γ Y,subsets ((X,A) Γ (Y,B)),m) β§
measure_space (X Γ Y,subsets ((X,A) Γ (Y,B)),m') β§
(βs t. s β A β§ t β B β m (s Γ t) = u s * v t) β§
(βs t. s β A β§ t β B β m' (s Γ t) = u s * v t) β
βx. x β subsets ((X,A) Γ (Y,B)) β m x = m' x
[exhausting_sequence_CROSS] Theorem
β’ βX Y A B f g.
exhausting_sequence (X,A) f β§ exhausting_sequence (Y,B) g β
exhausting_sequence (X Γ Y,prod_sets A B) (Ξ»n. f n Γ g n)
[exhausting_sequence_alt] Theorem
β’ βa f.
exhausting_sequence a f β
f β (π(:num) β subsets a) β§ (βm n. m β€ n β f m β f n) β§
BIGUNION (IMAGE f π(:num)) = space a
[exhausting_sequence_cross] Theorem
β’ βX Y A B f g.
exhausting_sequence (X,A) f β§ exhausting_sequence (Y,B) g β
exhausting_sequence (fcp_cross X Y,fcp_prod A B)
(Ξ»n. fcp_cross (f n) (g n))
[exhausting_sequence_general_cross] Theorem
β’ βcons X Y A B f g.
exhausting_sequence (X,A) f β§ exhausting_sequence (Y,B) g β
exhausting_sequence
(general_cross cons X Y,general_prod cons A B)
(Ξ»n. general_cross cons (f n) (g n))
[existence_of_prod_measure] Theorem
β’ βX Y A B u v m0.
FINITE π(:Ξ²) β§ FINITE π(:Ξ³) β§
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
(βs t. s β A β§ t β B β m0 (fcp_cross s t) = u s * v t) β
(βs. s β subsets (fcp_sigma (X,A) (Y,B)) β
(βx. x β X β
(Ξ»y. π s (FCP_CONCAT x y)) β Borel_measurable (Y,B)) β§
(βy. y β Y β
(Ξ»x. π s (FCP_CONCAT x y)) β Borel_measurable (X,A)) β§
(Ξ»y. β«βΊ (X,A,u) (Ξ»x. π s (FCP_CONCAT x y))) β
Borel_measurable (Y,B) β§
(Ξ»x. β«βΊ (Y,B,v) (Ξ»y. π s (FCP_CONCAT x y))) β
Borel_measurable (X,A)) β§
βm. sigma_finite_measure_space
(fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) β§
(βs. s β fcp_prod A B β m s = m0 s) β§
βs. s β subsets (fcp_sigma (X,A) (Y,B)) β
m s =
β«βΊ (Y,B,v) (Ξ»y. β«βΊ (X,A,u) (Ξ»x. π s (FCP_CONCAT x y))) β§
m s =
β«βΊ (X,A,u) (Ξ»x. β«βΊ (Y,B,v) (Ξ»y. π s (FCP_CONCAT x y)))
[existence_of_prod_measure_general] Theorem
β’ βcons car cdr X Y A B u v m0.
pair_operation cons car cdr β§
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
(βs t. s β A β§ t β B β m0 (general_cross cons s t) = u s * v t) β
(βs. s β subsets (general_sigma cons (X,A) (Y,B)) β
(βx. x β X β (Ξ»y. π s (cons x y)) β Borel_measurable (Y,B)) β§
(βy. y β Y β (Ξ»x. π s (cons x y)) β Borel_measurable (X,A)) β§
(Ξ»y. β«βΊ (X,A,u) (Ξ»x. π s (cons x y))) β
Borel_measurable (Y,B) β§
(Ξ»x. β«βΊ (Y,B,v) (Ξ»y. π s (cons x y))) β
Borel_measurable (X,A)) β§
βm. sigma_finite_measure_space
(general_cross cons X Y,
subsets (general_sigma cons (X,A) (Y,B)),m) β§
(βs. s β general_prod cons A B β m s = m0 s) β§
βs. s β subsets (general_sigma cons (X,A) (Y,B)) β
m s = β«βΊ (Y,B,v) (Ξ»y. β«βΊ (X,A,u) (Ξ»x. π s (cons x y))) β§
m s = β«βΊ (X,A,u) (Ξ»x. β«βΊ (Y,B,v) (Ξ»y. π s (cons x y)))
[fcp_sigma_alt] Theorem
β’ βA B. fcp_sigma A B = general_sigma FCP_CONCAT A B
[filtered_measure_space_alt] Theorem
β’ βm a.
filtered_measure_space m a β
measure_space m β§ filtration (m_space m,measurable_sets m) a
[filtration_alt] Theorem
β’ βA a. filtration A a β filtration (π(:num),$<=) A a
[general_filtered_measure_space_alt] Theorem
β’ βsp sts m a.
filtered_measure_space (sp,sts,m) a β
filtered_measure_space (π(:num),$<=) (sp,sts,m) a
[general_sigma_of_generator] Theorem
β’ βcons car cdr X Y E G.
pair_operation cons car cdr β§ subset_class X E β§
subset_class Y G β§ has_exhausting_sequence (X,E) β§
has_exhausting_sequence (Y,G) β
general_sigma cons (X,E) (Y,G) =
general_sigma cons (sigma X E) (sigma Y G)
[has_exhausting_sequence_alt] Theorem
β’ βa. has_exhausting_sequence a β
βf. f β (π(:num) β subsets a) β§ (βm n. m β€ n β f m β f n) β§
BIGUNION (IMAGE f π(:num)) = space a
[has_exhausting_sequence_def] Theorem
β’ βa. has_exhausting_sequence a β
βf. f β (π(:num) β subsets a) β§ (βn. f n β f (SUC n)) β§
BIGUNION (IMAGE f π(:num)) = space a
[integrable_cong_measure] Theorem
β’ βsp sts u v f.
measure_space (sp,sts,u) β§ measure_space (sp,sts,v) β§
(βs. s β sts β u s = v s) β
(integrable (sp,sts,u) f β integrable (sp,sts,v) f)
[integrable_cong_measure'] Theorem
β’ βm1 m2 f.
measure_space m1 β§ measure_space m2 β§ m_space m1 = m_space m2 β§
measurable_sets m1 = measurable_sets m2 β§
(βs. s β measurable_sets m1 β measure m1 s = measure m2 s) β
(integrable m1 f β integrable m2 f)
[integral_cong_measure] Theorem
β’ βsp sts u v f.
measure_space (sp,sts,u) β§ measure_space (sp,sts,v) β§
(βs. s β sts β u s = v s) β
β« (sp,sts,u) f = β« (sp,sts,v) f
[integral_cong_measure'] Theorem
β’ βm1 m2 f.
measure_space m1 β§ measure_space m2 β§ m_space m1 = m_space m2 β§
measurable_sets m1 = measurable_sets m2 β§
(βs. s β measurable_sets m1 β measure m1 s = measure m2 s) β
β« m1 f = β« m2 f
[integral_distr] Theorem
β’ βM B f u.
measure_space M β§ sigma_algebra B β§
f β measurable (m_space M,measurable_sets M) B β§
u β Borel_measurable B β
β« (space B,subsets B,distr M f) u = β« M (u β f) β§
(integrable (space B,subsets B,distr M f) u β
integrable M (u β f))
[lborel_2d_prod_measure] Theorem
β’ βs. s β measurable_sets lborel_2d β
measure lborel_2d s = measure (lborel Γ lborel) s
[measure_space_prod_measure] Theorem
β’ βm1 m2.
sigma_finite_measure_space m1 β§ sigma_finite_measure_space m2 β
measure_space (m1 Γ m2)
[pos_fn_integral_cong_measure] Theorem
β’ βsp sts u v f.
measure_space (sp,sts,u) β§ measure_space (sp,sts,v) β§
(βs. s β sts β u s = v s) β§ (βx. x β sp β 0 β€ f x) β
β«βΊ (sp,sts,u) f = β«βΊ (sp,sts,v) f
[pos_fn_integral_cong_measure'] Theorem
β’ βm1 m2 f.
measure_space m1 β§ measure_space m2 β§ m_space m1 = m_space m2 β§
measurable_sets m1 = measurable_sets m2 β§
(βs. s β measurable_sets m1 β measure m1 s = measure m2 s) β§
(βx. x β m_space m1 β 0 β€ f x) β
β«βΊ m1 f = β«βΊ m2 f
[pos_fn_integral_distr] Theorem
β’ βM B f u.
measure_space M β§ sigma_algebra B β§
f β measurable (m_space M,measurable_sets M) B β§
u β Borel_measurable B β§ (βx. x β space B β 0 β€ u x) β
β«βΊ (space B,subsets B,distr M f) u = β«βΊ M (u β f)
[prod_sigma_alt] Theorem
β’ βA B. A Γ B = general_sigma $, A B
[prod_sigma_of_generator] Theorem
β’ βX Y E G.
FINITE π(:Ξ²) β§ FINITE π(:Ξ³) β§ subset_class X E β§
subset_class Y G β§ has_exhausting_sequence (X,E) β§
has_exhausting_sequence (Y,G) β
fcp_sigma (X,E) (Y,G) = fcp_sigma (sigma X E) (sigma Y G)
[sigma_algebra_general_sigma] Theorem
β’ βcons A B.
subset_class (space A) (subsets A) β§
subset_class (space B) (subsets B) β
sigma_algebra (general_sigma cons A B)
[sigma_algebra_prod_sigma] Theorem
β’ βa b.
subset_class (space a) (subsets a) β§
subset_class (space b) (subsets b) β
sigma_algebra (fcp_sigma a b)
[sigma_algebra_prod_sigma'] Theorem
β’ βX Y A B.
subset_class X A β§ subset_class Y B β
sigma_algebra (fcp_sigma (X,A) (Y,B))
[sigma_finite_alt] Theorem
β’ βm. sigma_finite m β
βf. (f β (π(:num) β measurable_sets m) β§
(βm n. m β€ n β f m β f n) β§
BIGUNION (IMAGE f π(:num)) = m_space m) β§
βn. measure m (f n) < +β
[sigma_finite_alt_exhausting_sequence] Theorem
β’ βm. sigma_finite m β
βf. exhausting_sequence (m_space m,measurable_sets m) f β§
βn. measure m (f n) < +β
[sigma_finite_filtered_measure_space_alt] Theorem
β’ βsp sts m a.
sigma_finite_filtered_measure_space (sp,sts,m) a β
sigma_finite_filtered_measure_space (π(:num),$<=) (sp,sts,m) a
[sigma_finite_has_exhausting_sequence] Theorem
β’ βsp sts u.
sigma_finite (sp,sts,u) β has_exhausting_sequence (sp,sts)
[uniqueness_of_prod_measure] Theorem
β’ βX Y E G A B u v m m'.
FINITE π(:Ξ²) β§ FINITE π(:Ξ³) β§ subset_class X E β§
subset_class Y G β§ sigma_finite (X,E,u) β§ sigma_finite (Y,G,v) β§
(βs t. s β E β§ t β E β s β© t β E) β§
(βs t. s β G β§ t β G β s β© t β G) β§ A = sigma X E β§
B = sigma Y G β§ measure_space (X,subsets A,u) β§
measure_space (Y,subsets B,v) β§
measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m) β§
measure_space (fcp_cross X Y,subsets (fcp_sigma A B),m') β§
(βs t. s β E β§ t β G β m (fcp_cross s t) = u s * v t) β§
(βs t. s β E β§ t β G β m' (fcp_cross s t) = u s * v t) β
βx. x β subsets (fcp_sigma A B) β m x = m' x
[uniqueness_of_prod_measure'] Theorem
β’ βX Y A B u v m m'.
FINITE π(:Ξ²) β§ FINITE π(:Ξ³) β§
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m) β§
measure_space (fcp_cross X Y,subsets (fcp_sigma (X,A) (Y,B)),m') β§
(βs t. s β A β§ t β B β m (fcp_cross s t) = u s * v t) β§
(βs t. s β A β§ t β B β m' (fcp_cross s t) = u s * v t) β
βx. x β subsets (fcp_sigma (X,A) (Y,B)) β m x = m' x
[uniqueness_of_prod_measure_general] Theorem
β’ βcons car cdr X Y E G A B u v m m'.
pair_operation cons car cdr β§ subset_class X E β§
subset_class Y G β§ sigma_finite (X,E,u) β§ sigma_finite (Y,G,v) β§
(βs t. s β E β§ t β E β s β© t β E) β§
(βs t. s β G β§ t β G β s β© t β G) β§ A = sigma X E β§
B = sigma Y G β§ measure_space (X,subsets A,u) β§
measure_space (Y,subsets B,v) β§
measure_space
(general_cross cons X Y,subsets (general_sigma cons A B),m) β§
measure_space
(general_cross cons X Y,subsets (general_sigma cons A B),m') β§
(βs t. s β E β§ t β G β m (general_cross cons s t) = u s * v t) β§
(βs t. s β E β§ t β G β m' (general_cross cons s t) = u s * v t) β
βx. x β subsets (general_sigma cons A B) β m x = m' x
[uniqueness_of_prod_measure_general'] Theorem
β’ βcons car cdr X Y A B u v m m'.
pair_operation cons car cdr β§
sigma_finite_measure_space (X,A,u) β§
sigma_finite_measure_space (Y,B,v) β§
measure_space
(general_cross cons X Y,
subsets (general_sigma cons (X,A) (Y,B)),m) β§
measure_space
(general_cross cons X Y,
subsets (general_sigma cons (X,A) (Y,B)),m') β§
(βs t. s β A β§ t β B β m (general_cross cons s t) = u s * v t) β§
(βs t. s β A β§ t β B β m' (general_cross cons s t) = u s * v t) β
βx. x β subsets (general_sigma cons (X,A) (Y,B)) β m x = m' x
*)
end
HOL 4, Kananaskis-14