Structure listRangeTheory


Source File Identifier index Theory binding index

signature listRangeTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val listRangeINC_def : thm
    val listRangeLHI_def : thm
  
  (*  Theorems  *)
    val EL_listRangeLHI : thm
    val LENGTH_listRangeLHI : thm
    val MEM_listRangeINC : thm
    val MEM_listRangeLHI : thm
    val listRangeINC_CONS : thm
    val listRangeINC_EMPTY : thm
    val listRangeINC_SING : thm
    val listRangeLHI_ALL_DISTINCT : thm
    val listRangeLHI_CONS : thm
    val listRangeLHI_EMPTY : thm
    val listRangeLHI_EQ : thm
  
  val listRange_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [list] Parent theory of "listRange"
   
   [listRangeINC_def]  Definition
      
      ⊢ ∀m n. [m .. n] = GENLIST (λi. m + i) (n + 1 − m)
   
   [listRangeLHI_def]  Definition
      
      ⊢ ∀m n. [m ..< n] = GENLIST (λi. m + i) (n − m)
   
   [EL_listRangeLHI]  Theorem
      
      ⊢ lo + i < hi ⇒ EL i [lo ..< hi] = lo + i
   
   [LENGTH_listRangeLHI]  Theorem
      
      ⊢ LENGTH [lo ..< hi] = hi − lo
   
   [MEM_listRangeINC]  Theorem
      
      ⊢ MEM x [m .. n] ⇔ m ≤ x ∧ x ≤ n
   
   [MEM_listRangeLHI]  Theorem
      
      ⊢ MEM x [m ..< n] ⇔ m ≤ x ∧ x < n
   
   [listRangeINC_CONS]  Theorem
      
      ⊢ m ≤ n ⇒ [m .. n] = m::[m + 1 .. n]
   
   [listRangeINC_EMPTY]  Theorem
      
      ⊢ n < m ⇒ [m .. n] = []
   
   [listRangeINC_SING]  Theorem
      
      ⊢ [m .. m] = [m]
   
   [listRangeLHI_ALL_DISTINCT]  Theorem
      
      ⊢ ALL_DISTINCT [lo ..< hi]
   
   [listRangeLHI_CONS]  Theorem
      
      ⊢ lo < hi ⇒ [lo ..< hi] = lo::[lo + 1 ..< hi]
   
   [listRangeLHI_EMPTY]  Theorem
      
      ⊢ hi ≤ lo ⇒ [lo ..< hi] = []
   
   [listRangeLHI_EQ]  Theorem
      
      ⊢ [m ..< m] = []
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14