Structure liftingTheory
signature liftingTheory =
sig
type thm = Thm.thm
(* Definitions *)
val Qt_def : thm
val map_fun_def : thm
(* Theorems *)
val HK_thm2 : thm
val Qt_EQ : thm
val Qt_alt : thm
val Qt_alt_def2 : thm
val Qt_right_unique : thm
val Qt_surj : thm
val R_repabs : thm
val funQ : thm
val idQ : thm
val listQ : thm
val map_fun_I : thm
val map_fun_id : thm
val map_fun_o : thm
val map_fun_thm : thm
val pairQ : thm
val setQ : thm
val lifting_grammars : type_grammar.grammar * term_grammar.grammar
(*
[transfer] Parent theory of "lifting"
[Qt_def] Definition
⊢ ∀R Abs Rep Tf.
Qt R Abs Rep Tf ⇔
R = Tfᵀ ∘ᵣ Tf ∧ (∀a b. Tf a b ⇒ Abs a = b) ∧ ∀a. Tf (Rep a) a
[map_fun_def] Definition
⊢ ∀f g h. (f ---> g) h = g ∘ h ∘ f
[HK_thm2] Theorem
⊢ Qt R Abs Rep Tf ∧ f = Abs t ∧ R t t ⇒ Tf t f
[Qt_EQ] Theorem
⊢ Qt R Abs Rep Tf ⇒ (Tf |==> Tf |==> $<=>) R $=
[Qt_alt] Theorem
⊢ Qt R Abs Rep Tf ⇔
(∀a. Abs (Rep a) = a) ∧ (∀a. R (Rep a) (Rep a)) ∧
(∀c1 c2. R c1 c2 ⇔ R c1 c1 ∧ R c2 c2 ∧ Abs c1 = Abs c2) ∧
Tf = (λc a. R c c ∧ Abs c = a)
[Qt_alt_def2] Theorem
⊢ Qt R Abs Rep Tf ⇔
(∀c a. Tf c a ⇒ Abs c = a) ∧ (∀a. Tf (Rep a) a) ∧
∀c1 c2. R c1 c2 ⇔ Tf c1 (Abs c2) ∧ Tf c2 (Abs c1)
[Qt_right_unique] Theorem
⊢ Qt R Abs Rep Tf ⇒ right_unique Tf
[Qt_surj] Theorem
⊢ Qt R Abs Rep Tf ⇒ surj Tf
[R_repabs] Theorem
⊢ Qt R Abs Rep Tf ⇒ ∀x. R x x ⇒ R (Rep (Abs x)) x
[funQ] Theorem
⊢ Qt D AbsD RepD TfD ∧ Qt R AbsR RepR TfR ⇒
Qt (D |==> R) (RepD ---> AbsR) (AbsD ---> RepR) (TfD |==> TfR)
[idQ] Theorem
⊢ Qt $= I I $=
[listQ] Theorem
⊢ Qt R Abs Rep Tf ⇒ Qt (LIST_REL R) (MAP Abs) (MAP Rep) (LIST_REL Tf)
[map_fun_I] Theorem
⊢ f ---> I = flip $o f ∧ I ---> g = $o g
[map_fun_id] Theorem
⊢ I ---> I = I
[map_fun_o] Theorem
⊢ f1 ∘ f2 ---> g1 ∘ g2 = (f2 ---> g1) ∘ (f1 ---> g2)
[map_fun_thm] Theorem
⊢ (f ---> g) h x = g (h (f x))
[pairQ] Theorem
⊢ Qt R1 Abs1 Rep1 Tf1 ∧ Qt R2 Abs2 Rep2 Tf2 ⇒
Qt (R1 ### R2) (Abs1 ## Abs2) (Rep1 ## Rep2) (Tf1 ### Tf2)
[setQ] Theorem
⊢ Qt R Abs Rep Tf ⇒
Qt (R |==> $<=>) (PREIMAGE Rep) (PREIMAGE Abs) (Tf |==> $<=>)
*)
end
HOL 4, Kananaskis-14