Structure integer_wordTheory


Source File Identifier index Theory binding index

signature integer_wordTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val INT_MAX_def : thm
    val INT_MIN_def : thm
    val UINT_MAX_def : thm
    val fromString_primitive_def : thm
    val i2w_def : thm
    val saturate_i2sw_def : thm
    val saturate_i2w_def : thm
    val saturate_sw2sw_def : thm
    val saturate_sw2w_def : thm
    val saturate_w2sw_def : thm
    val signed_saturate_add_def : thm
    val signed_saturate_sub_def : thm
    val toString_def : thm
    val w2i_def : thm
    val word_sdiv_def : thm
    val word_smod_def : thm
  
  (*  Theorems  *)
    val INT_BOUND_ORDER : thm
    val INT_MAX : thm
    val INT_MAX_MONOTONIC : thm
    val INT_MIN : thm
    val INT_MIN_MONOTONIC : thm
    val INT_ZERO_LE_INT_MAX : thm
    val INT_ZERO_LT_INT_MAX : thm
    val INT_ZERO_LT_INT_MIN : thm
    val INT_ZERO_LT_UINT_MAX : thm
    val MULT_MINUS_ONE : thm
    val ONE_LE_TWOEXP : thm
    val UINT_MAX : thm
    val WORD_GEi : thm
    val WORD_GTi : thm
    val WORD_LEi : thm
    val WORD_LTi : thm
    val different_sign_then_no_overflow : thm
    val fromString_def : thm
    val fromString_ind : thm
    val i2w_0 : thm
    val i2w_DIV : thm
    val i2w_INT_MAX : thm
    val i2w_INT_MIN : thm
    val i2w_UINT_MAX : thm
    val i2w_minus_1 : thm
    val i2w_pos : thm
    val i2w_w2i : thm
    val i2w_w2n : thm
    val i2w_w2n_w2w : thm
    val int_word_nchotomy : thm
    val overflow : thm
    val overflow_add : thm
    val overflow_sub : thm
    val ranged_int_word_nchotomy : thm
    val saturate_i2sw : thm
    val saturate_i2sw_0 : thm
    val saturate_i2w_0 : thm
    val saturate_sw2sw : thm
    val saturate_sw2w : thm
    val saturate_w2sw : thm
    val signed_saturate_add : thm
    val signed_saturate_sub : thm
    val sub_overflow : thm
    val sw2sw_i2w : thm
    val w2i_1 : thm
    val w2i_11 : thm
    val w2i_11_lift : thm
    val w2i_INT_MAXw : thm
    val w2i_INT_MINw : thm
    val w2i_UINT_MAXw : thm
    val w2i_eq_0 : thm
    val w2i_eq_w2n : thm
    val w2i_ge : thm
    val w2i_i2w : thm
    val w2i_i2w_id : thm
    val w2i_i2w_neg : thm
    val w2i_i2w_pos : thm
    val w2i_le : thm
    val w2i_lt_0 : thm
    val w2i_minus_1 : thm
    val w2i_n2w_mod : thm
    val w2i_n2w_neg : thm
    val w2i_n2w_pos : thm
    val w2i_neg : thm
    val w2i_sw2sw_bounds : thm
    val w2i_w2n_pos : thm
    val w2n_i2w : thm
    val w2w_i2w : thm
    val word_0_w2i : thm
    val word_abs_i2w : thm
    val word_abs_w2i : thm
    val word_add_i2w : thm
    val word_add_i2w_w2n : thm
    val word_i2w_add : thm
    val word_i2w_mul : thm
    val word_msb_i2w : thm
    val word_msb_i2w_lt_0 : thm
    val word_mul_i2w : thm
    val word_mul_i2w_w2n : thm
    val word_quot : thm
    val word_rem : thm
    val word_sub_i2w : thm
    val word_sub_i2w_w2n : thm
  
  val integer_word_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [Omega] Parent theory of "integer_word"
   
   [int_arith] Parent theory of "integer_word"
   
   [words] Parent theory of "integer_word"
   
   [INT_MAX_def]  Definition
      
      ⊢ INT_MAX (:α) = &INT_MIN (:α) − 1
   
   [INT_MIN_def]  Definition
      
      ⊢ INT_MIN (:α) = -INT_MAX (:α) − 1
   
   [UINT_MAX_def]  Definition
      
      ⊢ UINT_MAX (:α) = &dimword (:α) − 1
   
   [fromString_primitive_def]  Definition
      
      ⊢ fromString =
        WFREC (@R. WF R)
          (λfromString a.
               case a of
                 "" => I (&toNum "")
               | STRING #"~" t => I (-&toNum t)
               | STRING #"-" t => I (-&toNum t)
               | STRING v4 t => I (&toNum (STRING v4 t)))
   
   [i2w_def]  Definition
      
      ⊢ ∀i. i2w i = if i < 0 then -n2w (Num (-i)) else n2w (Num i)
   
   [saturate_i2sw_def]  Definition
      
      ⊢ ∀i. saturate_i2sw i =
            if INT_MAX (:α) ≤ i then INT_MAXw
            else if i ≤ INT_MIN (:α) then INT_MINw
            else i2w i
   
   [saturate_i2w_def]  Definition
      
      ⊢ ∀i. saturate_i2w i =
            if UINT_MAX (:α) ≤ i then UINT_MAXw
            else if i < 0 then 0w
            else n2w (Num i)
   
   [saturate_sw2sw_def]  Definition
      
      ⊢ ∀w. saturate_sw2sw w = saturate_i2sw (w2i w)
   
   [saturate_sw2w_def]  Definition
      
      ⊢ ∀w. saturate_sw2w w = saturate_i2w (w2i w)
   
   [saturate_w2sw_def]  Definition
      
      ⊢ ∀w. saturate_w2sw w = saturate_i2sw (&w2n w)
   
   [signed_saturate_add_def]  Definition
      
      ⊢ ∀a b. signed_saturate_add a b = saturate_i2sw (w2i a + w2i b)
   
   [signed_saturate_sub_def]  Definition
      
      ⊢ ∀a b. signed_saturate_sub a b = saturate_i2sw (w2i a − w2i b)
   
   [toString_def]  Definition
      
      ⊢ ∀i. toString i =
            if i < 0 then STRCAT "~" (toString (Num (-i)))
            else toString (Num i)
   
   [w2i_def]  Definition
      
      ⊢ ∀w. w2i w = if word_msb w then -&w2n (-w) else &w2n w
   
   [word_sdiv_def]  Definition
      
      ⊢ ∀a b. word_sdiv a b = i2w (w2i a / w2i b)
   
   [word_smod_def]  Definition
      
      ⊢ ∀a b. word_smod a b = i2w (w2i a % w2i b)
   
   [INT_BOUND_ORDER]  Theorem
      
      ⊢ INT_MIN (:α) < INT_MAX (:α) ∧ INT_MAX (:α) < UINT_MAX (:α) ∧
        UINT_MAX (:α) < &dimword (:α)
   
   [INT_MAX]  Theorem
      
      ⊢ INT_MAX (:α) = &INT_MAX (:α)
   
   [INT_MAX_MONOTONIC]  Theorem
      
      ⊢ dimindex (:α) ≤ dimindex (:β) ⇒ INT_MAX (:α) ≤ INT_MAX (:β)
   
   [INT_MIN]  Theorem
      
      ⊢ INT_MIN (:α) = -&INT_MIN (:α)
   
   [INT_MIN_MONOTONIC]  Theorem
      
      ⊢ dimindex (:α) ≤ dimindex (:β) ⇒ INT_MIN (:β) ≤ INT_MIN (:α)
   
   [INT_ZERO_LE_INT_MAX]  Theorem
      
      ⊢ 0 ≤ INT_MAX (:α)
   
   [INT_ZERO_LT_INT_MAX]  Theorem
      
      ⊢ 1 < dimindex (:α) ⇒ 0 < INT_MAX (:α)
   
   [INT_ZERO_LT_INT_MIN]  Theorem
      
      ⊢ INT_MIN (:α) < 0
   
   [INT_ZERO_LT_UINT_MAX]  Theorem
      
      ⊢ 0 < UINT_MAX (:α)
   
   [MULT_MINUS_ONE]  Theorem
      
      ⊢ ∀i. -1w * i2w i = i2w (-i)
   
   [ONE_LE_TWOEXP]  Theorem
      
      ⊢ ∀n. 1 ≤ 2 ** n
   
   [UINT_MAX]  Theorem
      
      ⊢ UINT_MAX (:α) = &UINT_MAX (:α)
   
   [WORD_GEi]  Theorem
      
      ⊢ ∀a b. a ≥ b ⇔ w2i a ≥ w2i b
   
   [WORD_GTi]  Theorem
      
      ⊢ ∀a b. a > b ⇔ w2i a > w2i b
   
   [WORD_LEi]  Theorem
      
      ⊢ ∀a b. a ≤ b ⇔ w2i a ≤ w2i b
   
   [WORD_LTi]  Theorem
      
      ⊢ ∀a b. a < b ⇔ w2i a < w2i b
   
   [different_sign_then_no_overflow]  Theorem
      
      ⊢ ∀x y. (word_msb x ⇎ word_msb y) ⇒ (w2i (x + y) = w2i x + w2i y)
   
   [fromString_def]  Theorem
      
      ⊢ (fromString (STRING #"~" t) = -&toNum t) ∧
        (fromString (STRING #"-" t) = -&toNum t) ∧
        (fromString "" = &toNum "") ∧
        (fromString (STRING v4 v1) =
         if v4 = #"~" then -&toNum v1
         else if v4 = #"-" then -&toNum v1
         else &toNum (STRING v4 v1))
   
   [fromString_ind]  Theorem
      
      ⊢ ∀P. (∀t. P (STRING #"~" t)) ∧ (∀t. P (STRING #"-" t)) ∧ P "" ∧
            (∀v4 v1. P (STRING v4 v1)) ⇒
            ∀v. P v
   
   [i2w_0]  Theorem
      
      ⊢ i2w 0 = 0w
   
   [i2w_DIV]  Theorem
      
      ⊢ ∀n i.
          n < dimindex (:α) ∧ INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒
          (i2w (i / 2 ** n) = i2w i ≫ n)
   
   [i2w_INT_MAX]  Theorem
      
      ⊢ i2w (INT_MAX (:α)) = INT_MAXw
   
   [i2w_INT_MIN]  Theorem
      
      ⊢ i2w (INT_MIN (:α)) = INT_MINw
   
   [i2w_UINT_MAX]  Theorem
      
      ⊢ i2w (UINT_MAX (:α)) = UINT_MAXw
   
   [i2w_minus_1]  Theorem
      
      ⊢ i2w (-1) = -1w
   
   [i2w_pos]  Theorem
      
      ⊢ ∀n. i2w (&n) = n2w n
   
   [i2w_w2i]  Theorem
      
      ⊢ ∀w. i2w (w2i w) = w
   
   [i2w_w2n]  Theorem
      
      ⊢ i2w (&w2n w) = w
   
   [i2w_w2n_w2w]  Theorem
      
      ⊢ ∀w. i2w (&w2n w) = w2w w
   
   [int_word_nchotomy]  Theorem
      
      ⊢ ∀w. ∃i. w = i2w i
   
   [overflow]  Theorem
      
      ⊢ ∀x y.
          w2i (x + y) ≠ w2i x + w2i y ⇔
          (word_msb x ⇔ word_msb y) ∧ (word_msb x ⇎ word_msb (x + y))
   
   [overflow_add]  Theorem
      
      ⊢ ∀x y. w2i (x + y) ≠ w2i x + w2i y ⇔ OVERFLOW x y F
   
   [overflow_sub]  Theorem
      
      ⊢ ∀x y. w2i (x − y) ≠ w2i x − w2i y ⇔ OVERFLOW x (¬y) T
   
   [ranged_int_word_nchotomy]  Theorem
      
      ⊢ ∀w. ∃i. (w = i2w i) ∧ INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α)
   
   [saturate_i2sw]  Theorem
      
      ⊢ ∀i. saturate_i2w i = if i < 0 then 0w else saturate_n2w (Num i)
   
   [saturate_i2sw_0]  Theorem
      
      ⊢ saturate_i2sw 0 = 0w
   
   [saturate_i2w_0]  Theorem
      
      ⊢ saturate_i2w 0 = 0w
   
   [saturate_sw2sw]  Theorem
      
      ⊢ ∀w. saturate_sw2sw w =
            if dimindex (:α) ≤ dimindex (:β) then sw2sw w
            else if sw2sw INT_MAXw ≤ w then INT_MAXw
            else if w ≤ sw2sw INT_MINw then INT_MINw
            else w2w w
   
   [saturate_sw2w]  Theorem
      
      ⊢ ∀w. saturate_sw2w w = if w < 0w then 0w else saturate_w2w w
   
   [saturate_w2sw]  Theorem
      
      ⊢ ∀w. saturate_w2sw w =
            if dimindex (:β) ≤ dimindex (:α) ∧ w2w INT_MAXw ≤₊ w then
              INT_MAXw
            else w2w w
   
   [signed_saturate_add]  Theorem
      
      ⊢ ∀a b.
          signed_saturate_add a b =
          (let
             sum = a + b and msba = word_msb a
           in
             if (msba ⇔ word_msb b) ∧ (msba ⇎ word_msb sum) then
               if msba then INT_MINw else INT_MAXw
             else sum)
   
   [signed_saturate_sub]  Theorem
      
      ⊢ ∀a b.
          signed_saturate_sub a b =
          if b = INT_MINw then if 0w ≤ a then INT_MAXw else a + INT_MINw
          else if dimindex (:α) = 1 then a && ¬b
          else signed_saturate_add a (-b)
   
   [sub_overflow]  Theorem
      
      ⊢ ∀x y.
          w2i (x − y) ≠ w2i x − w2i y ⇔
          (word_msb x ⇎ word_msb y) ∧ (word_msb x ⇎ word_msb (x − y))
   
   [sw2sw_i2w]  Theorem
      
      ⊢ ∀j. INT_MIN (:β) ≤ j ∧ j ≤ INT_MAX (:β) ∧
            dimindex (:β) ≤ dimindex (:α) ⇒
            (sw2sw (i2w j) = i2w j)
   
   [w2i_1]  Theorem
      
      ⊢ w2i 1w = if dimindex (:α) = 1 then -1 else 1
   
   [w2i_11]  Theorem
      
      ⊢ ∀v w. (w2i v = w2i w) ⇔ (v = w)
   
   [w2i_11_lift]  Theorem
      
      ⊢ ∀a b.
          dimindex (:α) ≤ dimindex (:γ) ∧ dimindex (:β) ≤ dimindex (:γ) ⇒
          ((w2i a = w2i b) ⇔ (sw2sw a = sw2sw b))
   
   [w2i_INT_MAXw]  Theorem
      
      ⊢ w2i INT_MAXw = INT_MAX (:α)
   
   [w2i_INT_MINw]  Theorem
      
      ⊢ w2i INT_MINw = INT_MIN (:α)
   
   [w2i_UINT_MAXw]  Theorem
      
      ⊢ w2i UINT_MAXw = -1
   
   [w2i_eq_0]  Theorem
      
      ⊢ ∀w. (w2i w = 0) ⇔ (w = 0w)
   
   [w2i_eq_w2n]  Theorem
      
      ⊢ w2i w =
        if w2n w < INT_MIN (:α) then &w2n w else &w2n w − &dimword (:α)
   
   [w2i_ge]  Theorem
      
      ⊢ ∀w. INT_MIN (:α) ≤ w2i w
   
   [w2i_i2w]  Theorem
      
      ⊢ ∀i. INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒ (w2i (i2w i) = i)
   
   [w2i_i2w_id]  Theorem
      
      ⊢ ∀i. INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ∧
            dimindex (:β) ≤ dimindex (:α) ⇒
            ((i = w2i (i2w i)) ⇔ (i2w i = sw2sw (i2w i)))
   
   [w2i_i2w_neg]  Theorem
      
      ⊢ ∀n. n ≤ INT_MIN (:α) ⇒ (w2i (i2w (-&n)) = -&n)
   
   [w2i_i2w_pos]  Theorem
      
      ⊢ ∀n. n ≤ INT_MAX (:α) ⇒ (w2i (i2w (&n)) = &n)
   
   [w2i_le]  Theorem
      
      ⊢ ∀w. w2i w ≤ INT_MAX (:α)
   
   [w2i_lt_0]  Theorem
      
      ⊢ ∀w. w2i w < 0 ⇔ w < 0w
   
   [w2i_minus_1]  Theorem
      
      ⊢ w2i (-1w) = -1
   
   [w2i_n2w_mod]  Theorem
      
      ⊢ ∀n m.
          n < dimword (:α) ∧ m ≤ dimindex (:α) ⇒
          (Num (w2i (n2w n) % 2 ** m) = n MOD 2 ** m)
   
   [w2i_n2w_neg]  Theorem
      
      ⊢ ∀n. INT_MIN (:α) ≤ n ∧ n < dimword (:α) ⇒
            (w2i (n2w n) = -&(dimword (:α) − n))
   
   [w2i_n2w_pos]  Theorem
      
      ⊢ ∀n. n < INT_MIN (:α) ⇒ (w2i (n2w n) = &n)
   
   [w2i_neg]  Theorem
      
      ⊢ ∀w. w ≠ INT_MINw ⇒ (w2i (-w) = -w2i w)
   
   [w2i_sw2sw_bounds]  Theorem
      
      ⊢ ∀w. INT_MIN (:α) ≤ w2i (sw2sw w) ∧ w2i (sw2sw w) ≤ INT_MAX (:α)
   
   [w2i_w2n_pos]  Theorem
      
      ⊢ ∀w n. ¬word_msb w ∧ w2i w < &n ⇒ w2n w < n
   
   [w2n_i2w]  Theorem
      
      ⊢ &w2n (i2w n) = n % &dimword (:α)
   
   [w2w_i2w]  Theorem
      
      ⊢ ∀i. dimindex (:α) ≤ dimindex (:β) ⇒ (w2w (i2w i) = i2w i)
   
   [word_0_w2i]  Theorem
      
      ⊢ w2i 0w = 0
   
   [word_abs_i2w]  Theorem
      
      ⊢ ∀i. INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒
            (word_abs (i2w i) = n2w (Num (ABS i)))
   
   [word_abs_w2i]  Theorem
      
      ⊢ ∀w. word_abs w = n2w (Num (ABS (w2i w)))
   
   [word_add_i2w]  Theorem
      
      ⊢ ∀a b. i2w (w2i a + w2i b) = a + b
   
   [word_add_i2w_w2n]  Theorem
      
      ⊢ ∀a b. i2w (&w2n a + &w2n b) = a + b
   
   [word_i2w_add]  Theorem
      
      ⊢ ∀a b. i2w a + i2w b = i2w (a + b)
   
   [word_i2w_mul]  Theorem
      
      ⊢ ∀a b. i2w a * i2w b = i2w (a * b)
   
   [word_msb_i2w]  Theorem
      
      ⊢ ∀i. word_msb (i2w i) ⇔ &INT_MIN (:α) ≤ i % &dimword (:α)
   
   [word_msb_i2w_lt_0]  Theorem
      
      ⊢ ∀i. INT_MIN (:α) ≤ i ∧ i ≤ INT_MAX (:α) ⇒
            (word_msb (i2w i) ⇔ i < 0)
   
   [word_mul_i2w]  Theorem
      
      ⊢ ∀a b. i2w (w2i a * w2i b) = a * b
   
   [word_mul_i2w_w2n]  Theorem
      
      ⊢ ∀a b. i2w (&w2n a * &w2n b) = a * b
   
   [word_quot]  Theorem
      
      ⊢ ∀a b. b ≠ 0w ⇒ (a / b = i2w (w2i a quot w2i b))
   
   [word_rem]  Theorem
      
      ⊢ ∀a b. b ≠ 0w ⇒ (word_rem a b = i2w (w2i a rem w2i b))
   
   [word_sub_i2w]  Theorem
      
      ⊢ ∀a b. i2w (w2i a − w2i b) = a − b
   
   [word_sub_i2w_w2n]  Theorem
      
      ⊢ ∀a b. i2w (&w2n a − &w2n b) = a − b
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14