Structure int_arithTheory
signature int_arithTheory =
sig
type thm = Thm.thm
(* Definitions *)
val bmarker_def : thm
(* Theorems *)
val CONJ_EQ_ELIM : thm
val HO_SUB_ELIM : thm
val INT_DIVIDES_LRMUL : thm
val INT_DIVIDES_RELPRIME_MUL : thm
val INT_LINEAR_GCD : thm
val INT_LT_ADD_NUMERAL : thm
val INT_NUM_COND : thm
val INT_NUM_DIVIDES : thm
val INT_NUM_EVEN : thm
val INT_NUM_EXISTS : thm
val INT_NUM_FORALL : thm
val INT_NUM_ODD : thm
val INT_NUM_SUB : thm
val INT_NUM_UEXISTS : thm
val INT_SUB_SUB3 : thm
val NOT_INT_DIVIDES : thm
val NOT_INT_DIVIDES_POS : thm
val add_to_greater : thm
val bmarker_rewrites : thm
val bot_and_greaters : thm
val can_get_big : thm
val can_get_small : thm
val cooper_lemma_1 : thm
val elim_eq : thm
val elim_eq_coeffs : thm
val elim_le_coeffs : thm
val elim_lt_coeffs1 : thm
val elim_lt_coeffs2 : thm
val elim_minus_ones : thm
val elim_neg_ones : thm
val eq_context_rwt1 : thm
val eq_context_rwt2 : thm
val eq_justify_multiplication : thm
val eq_move_all_left : thm
val eq_move_all_right : thm
val eq_move_left_left : thm
val eq_move_left_right : thm
val eq_move_right_left : thm
val gcd1thm : thm
val gcd21_thm : thm
val gcdthm2 : thm
val in_additive_range : thm
val in_subtractive_range : thm
val justify_divides : thm
val justify_divides2 : thm
val justify_divides3 : thm
val lcm_eliminate : thm
val le_context_rwt1 : thm
val le_context_rwt2 : thm
val le_context_rwt3 : thm
val le_context_rwt4 : thm
val le_context_rwt5 : thm
val le_move_all_right : thm
val le_move_right_left : thm
val less_to_leq_samel : thm
val less_to_leq_samer : thm
val lt_justify_multiplication : thm
val lt_move_all_left : thm
val lt_move_all_right : thm
val lt_move_left_left : thm
val lt_move_left_right : thm
val move_sub : thm
val not_less : thm
val positive_product_implication : thm
val restricted_quantification_simp : thm
val subtract_to_small : thm
val top_and_lessers : thm
val int_arith_grammars : type_grammar.grammar * term_grammar.grammar
(*
[gcd] Parent theory of "int_arith"
[integer] Parent theory of "int_arith"
[bmarker_def] Definition
⊢ ∀b. int_arith$bmarker b ⇔ b
[CONJ_EQ_ELIM] Theorem
⊢ ∀P v e. (v = e) ∧ P v ⇔ (v = e) ∧ P e
[HO_SUB_ELIM] Theorem
⊢ ∀P a b. P (&(a − b)) ⇔ &b ≤ &a ∧ P (&a + -&b) ∨ &a < &b ∧ P 0
[INT_DIVIDES_LRMUL] Theorem
⊢ ∀p q r. q ≠ 0 ⇒ (p * q int_divides r * q ⇔ p int_divides r)
[INT_DIVIDES_RELPRIME_MUL] Theorem
⊢ ∀p q r. (gcd p q = 1) ⇒ (&p int_divides &q * r ⇔ &p int_divides r)
[INT_LINEAR_GCD] Theorem
⊢ ∀n m. ∃p q. p * &n + q * &m = &gcd n m
[INT_LT_ADD_NUMERAL] Theorem
⊢ ∀x y.
x < x + &NUMERAL (BIT1 y) ∧ x < x + &NUMERAL (BIT2 y) ∧
¬(x < x + -&NUMERAL y)
[INT_NUM_COND] Theorem
⊢ ∀b n m. &(if b then n else m) = if b then &n else &m
[INT_NUM_DIVIDES] Theorem
⊢ ∀n m. &n int_divides &m ⇔ divides n m
[INT_NUM_EVEN] Theorem
⊢ ∀n. EVEN n ⇔ 2 int_divides &n
[INT_NUM_EXISTS] Theorem
⊢ (∃n. P (&n)) ⇔ ∃x. 0 ≤ x ∧ P x
[INT_NUM_FORALL] Theorem
⊢ (∀n. P (&n)) ⇔ ∀x. 0 ≤ x ⇒ P x
[INT_NUM_ODD] Theorem
⊢ ∀n. ODD n ⇔ ¬(2 int_divides &n)
[INT_NUM_SUB] Theorem
⊢ ∀n m. &(n − m) = if &n < &m then 0 else &n − &m
[INT_NUM_UEXISTS] Theorem
⊢ (∃!n. P (&n)) ⇔ ∃!x. 0 ≤ x ∧ P x
[INT_SUB_SUB3] Theorem
⊢ ∀x y z. x − (y − z) = x + z − y
[NOT_INT_DIVIDES] Theorem
⊢ ∀c d.
c ≠ 0 ⇒
(¬(c int_divides d) ⇔
∃i. 1 ≤ i ∧ i ≤ ABS c − 1 ∧ c int_divides d + i)
[NOT_INT_DIVIDES_POS] Theorem
⊢ ∀n d.
n ≠ 0 ⇒
(¬(&n int_divides d) ⇔
∃i. (1 ≤ i ∧ i ≤ &n − 1) ∧ &n int_divides d + i)
[add_to_greater] Theorem
⊢ ∀x d. 0 < d ⇒ ∃k. 0 < x + k * d ∧ x + k * d ≤ d
[bmarker_rewrites] Theorem
⊢ ∀p q r.
(q ∧ int_arith$bmarker p ⇔ int_arith$bmarker p ∧ q) ∧
(q ∧ int_arith$bmarker p ∧ r ⇔ int_arith$bmarker p ∧ q ∧ r) ∧
((int_arith$bmarker p ∧ q) ∧ r ⇔ int_arith$bmarker p ∧ q ∧ r)
[bot_and_greaters] Theorem
⊢ ∀P d x0. (∀x. P x ⇒ P (x + d)) ∧ P x0 ⇒ ∀c. 0 < c ⇒ P (x0 + c * d)
[can_get_big] Theorem
⊢ ∀x y d. 0 < d ⇒ ∃c. 0 < c ∧ x < y + c * d
[can_get_small] Theorem
⊢ ∀x y d. 0 < d ⇒ ∃c. 0 < c ∧ y − c * d < x
[cooper_lemma_1] Theorem
⊢ ∀m n a b u v p q x d.
(d = gcd (u * m) (a * n)) ∧ (&d = p * &u * &m + q * &a * &n) ∧
m ≠ 0 ∧ n ≠ 0 ∧ a ≠ 0 ∧ u ≠ 0 ⇒
(&m int_divides &a * x + b ∧ &n int_divides &u * x + v ⇔
&m * &n int_divides &d * x + v * &m * p + b * &n * q ∧
&d int_divides &a * v − &u * b)
[elim_eq] Theorem
⊢ (x = y) ⇔ x < y + 1 ∧ y < x + 1
[elim_eq_coeffs] Theorem
⊢ ∀m x y. m ≠ 0 ⇒ ((&m * x = y) ⇔ &m int_divides y ∧ (x = y / &m))
[elim_le_coeffs] Theorem
⊢ ∀m n x. 0 < m ⇒ (0 ≤ m * x + n ⇔ 0 ≤ x + n / m)
[elim_lt_coeffs1] Theorem
⊢ ∀n m x. m ≠ 0 ⇒ (&n < &m * x ⇔ &n / &m < x)
[elim_lt_coeffs2] Theorem
⊢ ∀n m x.
m ≠ 0 ⇒
(&m * x < &n ⇔
x < if &m int_divides &n then &n / &m else &n / &m + 1)
[elim_minus_ones] Theorem
⊢ ∀x. x + 1 − 1 = x
[elim_neg_ones] Theorem
⊢ ∀x. x + -1 + 1 = x
[eq_context_rwt1] Theorem
⊢ (0 = c + x) ⇒ (0 ≤ c + y ⇔ x ≤ y)
[eq_context_rwt2] Theorem
⊢ (0 = c + x) ⇒ (0 ≤ -c + y ⇔ -x ≤ y)
[eq_justify_multiplication] Theorem
⊢ ∀n x y. 0 < n ⇒ ((x = y) ⇔ (n * x = n * y))
[eq_move_all_left] Theorem
⊢ ∀x y. (x = y) ⇔ (x + -y = 0)
[eq_move_all_right] Theorem
⊢ ∀x y. (x = y) ⇔ (0 = y + -x)
[eq_move_left_left] Theorem
⊢ ∀x y z. (x = y + z) ⇔ (x + -y = z)
[eq_move_left_right] Theorem
⊢ ∀x y z. (x + y = z) ⇔ (y = z + -x)
[eq_move_right_left] Theorem
⊢ ∀x y z. (x = y + z) ⇔ (x + -z = y)
[gcd1thm] Theorem
⊢ ∀m n p q. (p * &m + q * &n = 1) ⇒ (gcd m n = 1)
[gcd21_thm] Theorem
⊢ ∀m a x b p q.
(p * &a + q * &m = 1) ∧ m ≠ 0 ∧ a ≠ 0 ⇒
(&m int_divides &a * x + b ⇔ ∃t. x = -p * b + t * &m)
[gcdthm2] Theorem
⊢ ∀m a x b d p q.
(d = gcd a m) ∧ (&d = p * &a + q * &m) ∧ d ≠ 0 ∧ m ≠ 0 ∧ a ≠ 0 ⇒
(&m int_divides &a * x + b ⇔
&d int_divides b ∧ ∃t. x = -p * (b / &d) + t * (&m / &d))
[in_additive_range] Theorem
⊢ ∀low d x. low < x ∧ x ≤ low + d ⇔ ∃j. (x = low + j) ∧ 0 < j ∧ j ≤ d
[in_subtractive_range] Theorem
⊢ ∀high d x.
high − d ≤ x ∧ x < high ⇔ ∃j. (x = high − j) ∧ 0 < j ∧ j ≤ d
[justify_divides] Theorem
⊢ ∀n x y. 0 < n ⇒ (x int_divides y ⇔ n * x int_divides n * y)
[justify_divides2] Theorem
⊢ ∀n c x y.
n * x int_divides n * y + c ⇔
n * x int_divides n * y + c ∧ n int_divides c
[justify_divides3] Theorem
⊢ ∀n x c. n int_divides n * x + c ⇔ n int_divides c
[lcm_eliminate] Theorem
⊢ ∀P c. (∃x. P (c * x)) ⇔ ∃x. P x ∧ c int_divides x
[le_context_rwt1] Theorem
⊢ 0 ≤ c + x ⇒ x ≤ y ⇒ (0 ≤ c + y ⇔ T)
[le_context_rwt2] Theorem
⊢ 0 ≤ c + x ⇒ y < -x ⇒ (0 ≤ -c + y ⇔ F)
[le_context_rwt3] Theorem
⊢ 0 ≤ c + x ⇒ x < y ⇒ ((0 = c + y) ⇔ F)
[le_context_rwt4] Theorem
⊢ 0 ≤ c + x ⇒ x < -y ⇒ ((0 = -c + y) ⇔ F)
[le_context_rwt5] Theorem
⊢ 0 ≤ c + x ⇒ (0 ≤ -c + -x ⇔ (0 = c + x))
[le_move_all_right] Theorem
⊢ ∀x y. x ≤ y ⇔ 0 ≤ y + -x
[le_move_right_left] Theorem
⊢ ∀x y z. x ≤ y + z ⇔ x + -z ≤ y
[less_to_leq_samel] Theorem
⊢ ∀x y. x < y ⇔ x ≤ y + -1
[less_to_leq_samer] Theorem
⊢ ∀x y. x < y ⇔ x + 1 ≤ y
[lt_justify_multiplication] Theorem
⊢ ∀n x y. 0 < n ⇒ (x < y ⇔ n * x < n * y)
[lt_move_all_left] Theorem
⊢ ∀x y. x < y ⇔ x + -y < 0
[lt_move_all_right] Theorem
⊢ ∀x y. x < y ⇔ 0 < y + -x
[lt_move_left_left] Theorem
⊢ ∀x y z. x < y + z ⇔ x + -y < z
[lt_move_left_right] Theorem
⊢ ∀x y z. x + y < z ⇔ y < z + -x
[move_sub] Theorem
⊢ ∀c b a. a − c + b = a + b − c
[not_less] Theorem
⊢ ¬(x < y) ⇔ y < x + 1
[positive_product_implication] Theorem
⊢ ∀c d. 0 < c ∧ 0 < d ⇒ 0 < c * d
[restricted_quantification_simp] Theorem
⊢ ∀low high x.
low < x ∧ x ≤ high ⇔
low < high ∧ ((x = high) ∨ low < x ∧ x ≤ high − 1)
[subtract_to_small] Theorem
⊢ ∀x d. 0 < d ⇒ ∃k. 0 < x − k * d ∧ x − k * d ≤ d
[top_and_lessers] Theorem
⊢ ∀P d x0. (∀x. P x ⇒ P (x − d)) ∧ P x0 ⇒ ∀c. 0 < c ⇒ P (x0 − c * d)
*)
end
HOL 4, Kananaskis-14