Structure ind_typeTheory
signature ind_typeTheory =
sig
type thm = Thm.thm
(* Definitions *)
val BOTTOM : thm
val CONSTR : thm
val FCONS : thm
val FNIL : thm
val INJA : thm
val INJF : thm
val INJN : thm
val INJP : thm
val ISO : thm
val NUMPAIR : thm
val NUMPAIR_DEST : thm
val NUMSUM : thm
val NUMSUM_DEST : thm
val ZBOT : thm
val ZCONSTR : thm
val ZRECSPACE_def : thm
val recspace_TY_DEF : thm
val recspace_repfns : thm
(* Theorems *)
val CONSTR_BOT : thm
val CONSTR_IND : thm
val CONSTR_INJ : thm
val CONSTR_REC : thm
val DEST_REC_INJ : thm
val FCONS_DEST : thm
val INJA_INJ : thm
val INJF_INJ : thm
val INJN_INJ : thm
val INJP_INJ : thm
val INJ_INVERSE2 : thm
val ISO_FUN : thm
val ISO_REFL : thm
val ISO_USAGE : thm
val MK_REC_INJ : thm
val NUMPAIR_INJ : thm
val NUMPAIR_INJ_LEMMA : thm
val NUMSUM_INJ : thm
val ZCONSTR_ZBOT : thm
val ZRECSPACE_cases : thm
val ZRECSPACE_ind : thm
val ZRECSPACE_rules : thm
val ZRECSPACE_strongind : thm
val ind_type_grammars : type_grammar.grammar * term_grammar.grammar
(*
[numeral] Parent theory of "ind_type"
[while] Parent theory of "ind_type"
[BOTTOM] Definition
⊢ ind_type$BOTTOM = mk_rec ind_type$ZBOT
[CONSTR] Definition
⊢ ∀c i r.
ind_type$CONSTR c i r =
mk_rec (ind_type$ZCONSTR c i (λn. dest_rec (r n)))
[FCONS] Definition
⊢ (∀a f. ind_type$FCONS a f 0 = a) ∧
∀a f n. ind_type$FCONS a f (SUC n) = f n
[FNIL] Definition
⊢ ∀n. ind_type$FNIL n = ARB
[INJA] Definition
⊢ ∀a. ind_type$INJA a = (λn b. b = a)
[INJF] Definition
⊢ ∀f. ind_type$INJF f = (λn. f (NUMFST n) (NUMSND n))
[INJN] Definition
⊢ ∀m. ind_type$INJN m = (λn a. n = m)
[INJP] Definition
⊢ ∀f1 f2.
ind_type$INJP f1 f2 =
(λn a. if NUMLEFT n then f1 (NUMRIGHT n) a else f2 (NUMRIGHT n) a)
[ISO] Definition
⊢ ∀f g. ind_type$ISO f g ⇔ (∀x. f (g x) = x) ∧ ∀y. g (f y) = y
[NUMPAIR] Definition
⊢ ∀x y. ind_type$NUMPAIR x y = 2 ** x * (2 * y + 1)
[NUMPAIR_DEST] Definition
⊢ ∀x y.
NUMFST (ind_type$NUMPAIR x y) = x ∧
NUMSND (ind_type$NUMPAIR x y) = y
[NUMSUM] Definition
⊢ ∀b x. ind_type$NUMSUM b x = if b then SUC (2 * x) else 2 * x
[NUMSUM_DEST] Definition
⊢ ∀x y.
(NUMLEFT (ind_type$NUMSUM x y) ⇔ x) ∧
NUMRIGHT (ind_type$NUMSUM x y) = y
[ZBOT] Definition
⊢ ind_type$ZBOT = ind_type$INJP (ind_type$INJN 0) (@z. T)
[ZCONSTR] Definition
⊢ ∀c i r.
ind_type$ZCONSTR c i r =
ind_type$INJP (ind_type$INJN (SUC c))
(ind_type$INJP (ind_type$INJA i) (ind_type$INJF r))
[ZRECSPACE_def] Definition
⊢ ZRECSPACE =
(λa0.
∀ZRECSPACE'.
(∀a0.
a0 = ind_type$ZBOT ∨
(∃c i r.
a0 = ind_type$ZCONSTR c i r ∧ ∀n. ZRECSPACE' (r n)) ⇒
ZRECSPACE' a0) ⇒
ZRECSPACE' a0)
[recspace_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION ZRECSPACE rep
[recspace_repfns] Definition
⊢ (∀a. mk_rec (dest_rec a) = a) ∧
∀r. ZRECSPACE r ⇔ dest_rec (mk_rec r) = r
[CONSTR_BOT] Theorem
⊢ ∀c i r. ind_type$CONSTR c i r ≠ ind_type$BOTTOM
[CONSTR_IND] Theorem
⊢ ∀P. P ind_type$BOTTOM ∧
(∀c i r. (∀n. P (r n)) ⇒ P (ind_type$CONSTR c i r)) ⇒
∀x. P x
[CONSTR_INJ] Theorem
⊢ ∀c1 i1 r1 c2 i2 r2.
ind_type$CONSTR c1 i1 r1 = ind_type$CONSTR c2 i2 r2 ⇔
c1 = c2 ∧ i1 = i2 ∧ r1 = r2
[CONSTR_REC] Theorem
⊢ ∀Fn. ∃f. ∀c i r. f (ind_type$CONSTR c i r) = Fn c i r (λn. f (r n))
[DEST_REC_INJ] Theorem
⊢ ∀x y. dest_rec x = dest_rec y ⇔ x = y
[FCONS_DEST] Theorem
⊢ ind_type$FCONS a f n = if n = 0 then a else f (n − 1)
[INJA_INJ] Theorem
⊢ ∀a1 a2. ind_type$INJA a1 = ind_type$INJA a2 ⇔ a1 = a2
[INJF_INJ] Theorem
⊢ ∀f1 f2. ind_type$INJF f1 = ind_type$INJF f2 ⇔ f1 = f2
[INJN_INJ] Theorem
⊢ ∀n1 n2. ind_type$INJN n1 = ind_type$INJN n2 ⇔ n1 = n2
[INJP_INJ] Theorem
⊢ ∀f1 f1' f2 f2'.
ind_type$INJP f1 f2 = ind_type$INJP f1' f2' ⇔ f1 = f1' ∧ f2 = f2'
[INJ_INVERSE2] Theorem
⊢ ∀P. (∀x1 y1 x2 y2. P x1 y1 = P x2 y2 ⇔ x1 = x2 ∧ y1 = y2) ⇒
∃X Y. ∀x y. X (P x y) = x ∧ Y (P x y) = y
[ISO_FUN] Theorem
⊢ ind_type$ISO f f' ∧ ind_type$ISO g g' ⇒
ind_type$ISO (λh a'. g (h (f' a'))) (λh a. g' (h (f a)))
[ISO_REFL] Theorem
⊢ ind_type$ISO (λx. x) (λx. x)
[ISO_USAGE] Theorem
⊢ ind_type$ISO f g ⇒
(∀P. (∀x. P x) ⇔ ∀x. P (g x)) ∧ (∀P. (∃x. P x) ⇔ ∃x. P (g x)) ∧
∀a b. a = g b ⇔ f a = b
[MK_REC_INJ] Theorem
⊢ ∀x y. mk_rec x = mk_rec y ⇒ ZRECSPACE x ∧ ZRECSPACE y ⇒ x = y
[NUMPAIR_INJ] Theorem
⊢ ∀x1 y1 x2 y2.
ind_type$NUMPAIR x1 y1 = ind_type$NUMPAIR x2 y2 ⇔
x1 = x2 ∧ y1 = y2
[NUMPAIR_INJ_LEMMA] Theorem
⊢ ∀x1 y1 x2 y2.
ind_type$NUMPAIR x1 y1 = ind_type$NUMPAIR x2 y2 ⇒ x1 = x2
[NUMSUM_INJ] Theorem
⊢ ∀b1 x1 b2 x2.
ind_type$NUMSUM b1 x1 = ind_type$NUMSUM b2 x2 ⇔
(b1 ⇔ b2) ∧ x1 = x2
[ZCONSTR_ZBOT] Theorem
⊢ ∀c i r. ind_type$ZCONSTR c i r ≠ ind_type$ZBOT
[ZRECSPACE_cases] Theorem
⊢ ∀a0.
ZRECSPACE a0 ⇔
a0 = ind_type$ZBOT ∨
∃c i r. a0 = ind_type$ZCONSTR c i r ∧ ∀n. ZRECSPACE (r n)
[ZRECSPACE_ind] Theorem
⊢ ∀ZRECSPACE'.
ZRECSPACE' ind_type$ZBOT ∧
(∀c i r.
(∀n. ZRECSPACE' (r n)) ⇒ ZRECSPACE' (ind_type$ZCONSTR c i r)) ⇒
∀a0. ZRECSPACE a0 ⇒ ZRECSPACE' a0
[ZRECSPACE_rules] Theorem
⊢ ZRECSPACE ind_type$ZBOT ∧
∀c i r. (∀n. ZRECSPACE (r n)) ⇒ ZRECSPACE (ind_type$ZCONSTR c i r)
[ZRECSPACE_strongind] Theorem
⊢ ∀ZRECSPACE'.
ZRECSPACE' ind_type$ZBOT ∧
(∀c i r.
(∀n. ZRECSPACE (r n) ∧ ZRECSPACE' (r n)) ⇒
ZRECSPACE' (ind_type$ZCONSTR c i r)) ⇒
∀a0. ZRECSPACE a0 ⇒ ZRECSPACE' a0
*)
end
HOL 4, Kananaskis-14