Structure gcdTheory


Source File Identifier index Theory binding index

signature gcdTheory =
sig
  type thm = Thm.thm
  
  (*  Definitions  *)
    val is_gcd_def : thm
    val lcm_def : thm
  
  (*  Theorems  *)
    val BINARY_GCD : thm
    val FACTOR_OUT_GCD : thm
    val GCD_0L : thm
    val GCD_0R : thm
    val GCD_1 : thm
    val GCD_ADD_L : thm
    val GCD_ADD_L_THM : thm
    val GCD_ADD_R : thm
    val GCD_ADD_R_THM : thm
    val GCD_CANCEL_MULT : thm
    val GCD_COMMON_FACTOR : thm
    val GCD_EFFICIENTLY : thm
    val GCD_EQ_0 : thm
    val GCD_IS_GCD : thm
    val GCD_IS_GREATEST_COMMON_DIVISOR : thm
    val GCD_REF : thm
    val GCD_SUCfree_ind : thm
    val GCD_SYM : thm
    val IS_GCD_0L : thm
    val IS_GCD_0R : thm
    val IS_GCD_MINUS_L : thm
    val IS_GCD_MINUS_R : thm
    val IS_GCD_REF : thm
    val IS_GCD_SYM : thm
    val IS_GCD_UNIQUE : thm
    val LCM_0 : thm
    val LCM_1 : thm
    val LCM_COMM : thm
    val LCM_IS_LEAST_COMMON_MULTIPLE : thm
    val LCM_LE : thm
    val LCM_LEAST : thm
    val LINEAR_GCD : thm
    val L_EUCLIDES : thm
    val PRIME_GCD : thm
    val PRIME_IS_GCD : thm
    val P_EUCLIDES : thm
    val gcd_compute : thm
    val gcd_def : thm
    val gcd_ind : thm
  
  val gcd_grammars : type_grammar.grammar * term_grammar.grammar
(*
   [basicSize] Parent theory of "gcd"
   
   [divides] Parent theory of "gcd"
   
   [is_gcd_def]  Definition
      
      ⊢ ∀a b c.
          is_gcd a b c ⇔
          divides c a ∧ divides c b ∧
          ∀d. divides d a ∧ divides d b ⇒ divides d c
   
   [lcm_def]  Definition
      
      ⊢ ∀m n. lcm m n = if m = 0 ∨ n = 0 then 0 else m * n DIV gcd m n
   
   [BINARY_GCD]  Theorem
      
      ⊢ ∀m n.
          (EVEN m ∧ EVEN n ⇒ gcd m n = 2 * gcd (m DIV 2) (n DIV 2)) ∧
          (EVEN m ∧ ODD n ⇒ gcd m n = gcd (m DIV 2) n)
   
   [FACTOR_OUT_GCD]  Theorem
      
      ⊢ ∀n m.
          n ≠ 0 ∧ m ≠ 0 ⇒
          ∃p q. n = p * gcd n m ∧ m = q * gcd n m ∧ gcd p q = 1
   
   [GCD_0L]  Theorem
      
      ⊢ ∀a. gcd 0 a = a
   
   [GCD_0R]  Theorem
      
      ⊢ ∀a. gcd a 0 = a
   
   [GCD_1]  Theorem
      
      ⊢ gcd 1 x = 1 ∧ gcd x 1 = 1
   
   [GCD_ADD_L]  Theorem
      
      ⊢ ∀a b. gcd (a + b) a = gcd a b
   
   [GCD_ADD_L_THM]  Theorem
      
      ⊢ (∀a b. gcd (a + b) a = gcd a b) ∧ ∀a b. gcd (b + a) a = gcd a b
   
   [GCD_ADD_R]  Theorem
      
      ⊢ ∀a b. gcd a (a + b) = gcd a b
   
   [GCD_ADD_R_THM]  Theorem
      
      ⊢ (∀a b. gcd a (a + b) = gcd a b) ∧ ∀a b. gcd a (b + a) = gcd a b
   
   [GCD_CANCEL_MULT]  Theorem
      
      ⊢ ∀m n k. gcd m k = 1 ⇒ gcd m (k * n) = gcd m n
   
   [GCD_COMMON_FACTOR]  Theorem
      
      ⊢ ∀m n k. gcd (k * m) (k * n) = k * gcd m n
   
   [GCD_EFFICIENTLY]  Theorem
      
      ⊢ ∀a b. gcd a b = if a = 0 then b else gcd (b MOD a) a
   
   [GCD_EQ_0]  Theorem
      
      ⊢ ∀n m. gcd n m = 0 ⇔ n = 0 ∧ m = 0
   
   [GCD_IS_GCD]  Theorem
      
      ⊢ ∀a b. is_gcd a b (gcd a b)
   
   [GCD_IS_GREATEST_COMMON_DIVISOR]  Theorem
      
      ⊢ ∀a b.
          divides (gcd a b) a ∧ divides (gcd a b) b ∧
          ∀d. divides d a ∧ divides d b ⇒ divides d (gcd a b)
   
   [GCD_REF]  Theorem
      
      ⊢ ∀a. gcd a a = a
   
   [GCD_SUCfree_ind]  Theorem
      
      ⊢ ∀P. (∀y. P 0 y) ∧ (∀x y. P x y ⇒ P y x) ∧ (∀x. P x x) ∧
            (∀x y. 0 < x ∧ 0 < y ∧ P x y ⇒ P x (x + y)) ⇒
            ∀m n. P m n
   
   [GCD_SYM]  Theorem
      
      ⊢ ∀a b. gcd a b = gcd b a
   
   [IS_GCD_0L]  Theorem
      
      ⊢ ∀a. is_gcd 0 a a
   
   [IS_GCD_0R]  Theorem
      
      ⊢ ∀a. is_gcd a 0 a
   
   [IS_GCD_MINUS_L]  Theorem
      
      ⊢ ∀a b c. b ≤ a ∧ is_gcd (a − b) b c ⇒ is_gcd a b c
   
   [IS_GCD_MINUS_R]  Theorem
      
      ⊢ ∀a b c. a ≤ b ∧ is_gcd a (b − a) c ⇒ is_gcd a b c
   
   [IS_GCD_REF]  Theorem
      
      ⊢ ∀a. is_gcd a a a
   
   [IS_GCD_SYM]  Theorem
      
      ⊢ ∀a b c. is_gcd a b c ⇔ is_gcd b a c
   
   [IS_GCD_UNIQUE]  Theorem
      
      ⊢ ∀a b c d. is_gcd a b c ∧ is_gcd a b d ⇒ c = d
   
   [LCM_0]  Theorem
      
      ⊢ lcm 0 x = 0 ∧ lcm x 0 = 0
   
   [LCM_1]  Theorem
      
      ⊢ lcm 1 x = x ∧ lcm x 1 = x
   
   [LCM_COMM]  Theorem
      
      ⊢ lcm a b = lcm b a
   
   [LCM_IS_LEAST_COMMON_MULTIPLE]  Theorem
      
      ⊢ divides m (lcm m n) ∧ divides n (lcm m n) ∧
        ∀p. divides m p ∧ divides n p ⇒ divides (lcm m n) p
   
   [LCM_LE]  Theorem
      
      ⊢ 0 < m ∧ 0 < n ⇒ m ≤ lcm m n ∧ m ≤ lcm n m
   
   [LCM_LEAST]  Theorem
      
      ⊢ 0 < m ∧ 0 < n ⇒
        ∀p. 0 < p ∧ p < lcm m n ⇒ ¬divides m p ∨ ¬divides n p
   
   [LINEAR_GCD]  Theorem
      
      ⊢ ∀n m. n ≠ 0 ⇒ ∃p q. p * n = q * m + gcd m n
   
   [L_EUCLIDES]  Theorem
      
      ⊢ ∀a b c. gcd a b = 1 ∧ divides b (a * c) ⇒ divides b c
   
   [PRIME_GCD]  Theorem
      
      ⊢ ∀p b. prime p ⇒ divides p b ∨ gcd p b = 1
   
   [PRIME_IS_GCD]  Theorem
      
      ⊢ ∀p b. prime p ⇒ divides p b ∨ is_gcd p b 1
   
   [P_EUCLIDES]  Theorem
      
      ⊢ ∀p a b. prime p ∧ divides p (a * b) ⇒ divides p a ∨ divides p b
   
   [gcd_compute]  Theorem
      
      ⊢ (∀y. gcd 0 y = y) ∧
        (∀x. gcd (NUMERAL (BIT1 x)) 0 = NUMERAL (BIT1 x)) ∧
        (∀x. gcd (NUMERAL (BIT2 x)) 0 = NUMERAL (BIT2 x)) ∧
        (∀y x.
           gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT1 y)) =
           if NUMERAL (BIT1 y) − 1 ≤ NUMERAL (BIT1 x) − 1 then
             gcd (NUMERAL (BIT1 x) − 1 − (NUMERAL (BIT1 y) − 1))
               (NUMERAL (BIT1 y))
           else
             gcd (NUMERAL (BIT1 x))
               (NUMERAL (BIT1 y) − 1 − (NUMERAL (BIT1 x) − 1))) ∧
        (∀y x.
           gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y)) =
           if NUMERAL (BIT1 y) − 1 ≤ NUMERAL (BIT1 x) then
             gcd (NUMERAL (BIT1 x) − (NUMERAL (BIT1 y) − 1))
               (NUMERAL (BIT1 y))
           else
             gcd (NUMERAL (BIT2 x))
               (NUMERAL (BIT1 y) − 1 − NUMERAL (BIT1 x))) ∧
        (∀y x.
           gcd (NUMERAL (BIT1 x)) (NUMERAL (BIT2 y)) =
           if NUMERAL (BIT1 y) ≤ NUMERAL (BIT1 x) − 1 then
             gcd (NUMERAL (BIT1 x) − 1 − NUMERAL (BIT1 y))
               (NUMERAL (BIT2 y))
           else
             gcd (NUMERAL (BIT1 x))
               (NUMERAL (BIT1 y) − (NUMERAL (BIT1 x) − 1))) ∧
        ∀y x.
          gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT2 y)) =
          if NUMERAL (BIT1 y) ≤ NUMERAL (BIT1 x) then
            gcd (NUMERAL (BIT1 x) − NUMERAL (BIT1 y)) (NUMERAL (BIT2 y))
          else gcd (NUMERAL (BIT2 x)) (NUMERAL (BIT1 y) − NUMERAL (BIT1 x))
   
   [gcd_def]  Theorem
      
      ⊢ (∀y. gcd 0 y = y) ∧ (∀x. gcd (SUC x) 0 = SUC x) ∧
        ∀y x.
          gcd (SUC x) (SUC y) =
          if y ≤ x then gcd (x − y) (SUC y) else gcd (SUC x) (y − x)
   
   [gcd_ind]  Theorem
      
      ⊢ ∀P. (∀y. P 0 y) ∧ (∀x. P (SUC x) 0) ∧
            (∀x y.
               (¬(y ≤ x) ⇒ P (SUC x) (y − x)) ∧ (y ≤ x ⇒ P (x − y) (SUC y)) ⇒
               P (SUC x) (SUC y)) ⇒
            ∀v v1. P v v1
   
   
*)
end


Source File Identifier index Theory binding index

HOL 4, Kananaskis-14