Structure fmaptreeTheory
signature fmaptreeTheory =
sig
type thm = Thm.thm
(* Definitions *)
val FTNode_def : thm
val apply_path_def : thm
val construct_def : thm
val fmap_bij_thm : thm
val fmaptree_TY_DEF : thm
val fmtreerec_def : thm
val fupd_at_path_def : thm
val item_map_def : thm
val relrec_def : thm
val update_at_path_def : thm
val wf_def : thm
(* Theorems *)
val FTNode_11 : thm
val applicable_paths_FINITE : thm
val apply_path_SNOC : thm
val fmaptree_nchotomy : thm
val fmtree_Axiom : thm
val fmtreerec_thm : thm
val ft_ind : thm
val item_thm : thm
val map_thm : thm
val relrec_cases : thm
val relrec_ind : thm
val relrec_rules : thm
val relrec_strongind : thm
val wf_cases : thm
val wf_ind : thm
val wf_rules : thm
val wf_strongind : thm
val fmaptree_grammars : type_grammar.grammar * term_grammar.grammar
(*
[finite_map] Parent theory of "fmaptree"
[FTNode_def] Definition
⊢ ∀i fm. FTNode i fm = fromF (construct i (toF o_f fm))
[apply_path_def] Definition
⊢ (∀ft. apply_path [] ft = SOME ft) ∧
∀h t ft.
apply_path (h::t) ft =
if h ∈ FDOM (map ft) then apply_path t (map ft ' h) else NONE
[construct_def] Definition
⊢ ∀a kfm kl.
construct a kfm kl =
case kl of
[] => SOME a
| h::t => if h ∈ FDOM kfm then kfm ' h t else NONE
[fmap_bij_thm] Definition
⊢ (∀a. fromF (toF a) = a) ∧ ∀r. wf r ⇔ toF (fromF r) = r
[fmaptree_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION wf rep
[fmtreerec_def] Definition
⊢ ∀h ft. fmtreerec h ft = @r. relrec h ft r
[fupd_at_path_def] Definition
⊢ (∀f ft. fupd_at_path [] f ft = f ft) ∧
∀h t f ft.
fupd_at_path (h::t) f ft =
if h ∈ FDOM (map ft) then
case fupd_at_path t f (map ft ' h) of
NONE => NONE
| SOME ft' => SOME (FTNode (item ft) (map ft |+ (h,ft')))
else NONE
[item_map_def] Definition
⊢ ∀ft. ft = FTNode (item ft) (map ft)
[relrec_def] Definition
⊢ relrec =
(λh a0 a1.
∀relrec'.
(∀a0 a1.
(∃i fm rfm.
a0 = FTNode i fm ∧ a1 = h i rfm fm ∧
FDOM rfm = FDOM fm ∧
∀d. d ∈ FDOM fm ⇒ relrec' (fm ' d) (rfm ' d)) ⇒
relrec' a0 a1) ⇒
relrec' a0 a1)
[update_at_path_def] Definition
⊢ (∀a ft. update_at_path [] a ft = SOME (FTNode a (map ft))) ∧
∀h t a ft.
update_at_path (h::t) a ft =
if h ∈ FDOM (map ft) then
case update_at_path t a (map ft ' h) of
NONE => NONE
| SOME ft' => SOME (FTNode (item ft) (map ft |+ (h,ft')))
else NONE
[wf_def] Definition
⊢ wf =
(λa0.
∀wf'.
(∀a0.
(∃a fm.
a0 = construct a fm ∧ ∀k. k ∈ FDOM fm ⇒ wf' (fm ' k)) ⇒
wf' a0) ⇒
wf' a0)
[FTNode_11] Theorem
⊢ FTNode i1 f1 = FTNode i2 f2 ⇔ i1 = i2 ∧ f1 = f2
[applicable_paths_FINITE] Theorem
⊢ ∀ft. FINITE {p | (∃ft'. apply_path p ft = SOME ft')}
[apply_path_SNOC] Theorem
⊢ ∀ft x p.
apply_path (p ⧺ [x]) ft =
case apply_path p ft of
NONE => NONE
| SOME ft' => FLOOKUP (map ft') x
[fmaptree_nchotomy] Theorem
⊢ ∀ft. ∃i fm. ft = FTNode i fm
[fmtree_Axiom] Theorem
⊢ ∀h. ∃f. ∀i fm. f (FTNode i fm) = h i fm (f o_f fm)
[fmtreerec_thm] Theorem
⊢ fmtreerec h (FTNode i fm) = h i (fmtreerec h o_f fm) fm
[ft_ind] Theorem
⊢ ∀P. (∀a fm. (∀k. k ∈ FDOM fm ⇒ P (fm ' k)) ⇒ P (FTNode a fm)) ⇒
∀ft. P ft
[item_thm] Theorem
⊢ item (FTNode i fm) = i
[map_thm] Theorem
⊢ map (FTNode i fm) = fm
[relrec_cases] Theorem
⊢ ∀h a0 a1.
relrec h a0 a1 ⇔
∃i fm rfm.
a0 = FTNode i fm ∧ a1 = h i rfm fm ∧ FDOM rfm = FDOM fm ∧
∀d. d ∈ FDOM fm ⇒ relrec h (fm ' d) (rfm ' d)
[relrec_ind] Theorem
⊢ ∀h relrec'.
(∀i fm rfm.
FDOM rfm = FDOM fm ∧
(∀d. d ∈ FDOM fm ⇒ relrec' (fm ' d) (rfm ' d)) ⇒
relrec' (FTNode i fm) (h i rfm fm)) ⇒
∀a0 a1. relrec h a0 a1 ⇒ relrec' a0 a1
[relrec_rules] Theorem
⊢ ∀h i fm rfm.
FDOM rfm = FDOM fm ∧
(∀d. d ∈ FDOM fm ⇒ relrec h (fm ' d) (rfm ' d)) ⇒
relrec h (FTNode i fm) (h i rfm fm)
[relrec_strongind] Theorem
⊢ ∀h relrec'.
(∀i fm rfm.
FDOM rfm = FDOM fm ∧
(∀d. d ∈ FDOM fm ⇒
relrec h (fm ' d) (rfm ' d) ∧ relrec' (fm ' d) (rfm ' d)) ⇒
relrec' (FTNode i fm) (h i rfm fm)) ⇒
∀a0 a1. relrec h a0 a1 ⇒ relrec' a0 a1
[wf_cases] Theorem
⊢ ∀a0.
wf a0 ⇔
∃a fm. a0 = construct a fm ∧ ∀k. k ∈ FDOM fm ⇒ wf (fm ' k)
[wf_ind] Theorem
⊢ ∀wf'.
(∀a fm. (∀k. k ∈ FDOM fm ⇒ wf' (fm ' k)) ⇒ wf' (construct a fm)) ⇒
∀a0. wf a0 ⇒ wf' a0
[wf_rules] Theorem
⊢ ∀a fm. (∀k. k ∈ FDOM fm ⇒ wf (fm ' k)) ⇒ wf (construct a fm)
[wf_strongind] Theorem
⊢ ∀wf'.
(∀a fm.
(∀k. k ∈ FDOM fm ⇒ wf (fm ' k) ∧ wf' (fm ' k)) ⇒
wf' (construct a fm)) ⇒
∀a0. wf a0 ⇒ wf' a0
*)
end
HOL 4, Kananaskis-14