Structure floatTheory
signature floatTheory =
sig
type thm = Thm.thm
(* Definitions *)
val error_def : thm
val normalizes_def : thm
(* Theorems *)
val CLOSEST_IN_SET : thm
val CLOSEST_IS_CLOSEST : thm
val CLOSEST_IS_EVERYTHING : thm
val DEFLOAT_FLOAT_ROUND : thm
val DEFLOAT_FLOAT_ZEROSIGN_ROUND : thm
val DEFLOAT_FLOAT_ZEROSIGN_ROUND_FINITE : thm
val ERROR_BOUND_NORM_STRONG : thm
val ERROR_BOUND_NORM_STRONG_NORMALIZE : thm
val ERROR_IS_ZERO : thm
val EXPONENT : thm
val FLOAT_ADD : thm
val FLOAT_ADD_FINITE : thm
val FLOAT_ADD_RELATIVE : thm
val FLOAT_CASES : thm
val FLOAT_CASES_FINITE : thm
val FLOAT_DISTINCT : thm
val FLOAT_DISTINCT_FINITE : thm
val FLOAT_DIV : thm
val FLOAT_DIV_RELATIVE : thm
val FLOAT_EQ : thm
val FLOAT_EQ_REFL : thm
val FLOAT_GE : thm
val FLOAT_GT : thm
val FLOAT_INFINITES_DISTINCT : thm
val FLOAT_INFINITIES : thm
val FLOAT_INFINITIES_SIGNED : thm
val FLOAT_LARGEST_EXPLICIT : thm
val FLOAT_LE : thm
val FLOAT_LT : thm
val FLOAT_MUL : thm
val FLOAT_MUL_FINITE : thm
val FLOAT_MUL_RELATIVE : thm
val FLOAT_SUB : thm
val FLOAT_SUB_FINITE : thm
val FLOAT_SUB_RELATIVE : thm
val FLOAT_THRESHOLD_EXPLICIT : thm
val FRACTION : thm
val INFINITY_IS_INFINITY : thm
val INFINITY_NOT_NAN : thm
val ISFINITE : thm
val IS_CLOSEST_EXISTS : thm
val IS_FINITE_CLOSEST : thm
val IS_FINITE_EXPLICIT : thm
val IS_FINITE_FINITE : thm
val IS_FINITE_NONEMPTY : thm
val IS_VALID : thm
val IS_VALID_CLOSEST : thm
val IS_VALID_DEFLOAT : thm
val IS_VALID_FINITE : thm
val IS_VALID_NONEMPTY : thm
val IS_VALID_ROUND : thm
val IS_VALID_SPECIAL : thm
val REAL_IN_BINADE : thm
val RELATIVE_ERROR : thm
val SIGN : thm
val VALOF : thm
val VALOF_DEFLOAT_FLOAT_ZEROSIGN_ROUND : thm
val VAL_FINITE : thm
val VAL_THRESHOLD : thm
val ZERO_IS_ZERO : thm
val ZERO_NOT_NAN : thm
val float_grammars : type_grammar.grammar * term_grammar.grammar
(*
[ieee] Parent theory of "float"
[error_def] Definition
⊢ ∀x. error x = Val (float (round float_format To_nearest x)) − x
[normalizes_def] Definition
⊢ ∀x. normalizes x ⇔
(2 pow (bias float_format − 1))⁻¹ ≤ abs x ∧
abs x < threshold float_format
[CLOSEST_IN_SET] Theorem
⊢ ∀v p x s. FINITE s ⇒ s ≠ ∅ ⇒ closest v p s x ∈ s
[CLOSEST_IS_CLOSEST] Theorem
⊢ ∀v p x s. FINITE s ⇒ s ≠ ∅ ⇒ is_closest v s x (closest v p s x)
[CLOSEST_IS_EVERYTHING] Theorem
⊢ ∀v p s x.
FINITE s ⇒
s ≠ ∅ ⇒
is_closest v s x (closest v p s x) ∧
((∃b. is_closest v s x b ∧ p b) ⇒ p (closest v p s x))
[DEFLOAT_FLOAT_ROUND] Theorem
⊢ ∀x. defloat (float (round float_format To_nearest x)) =
round float_format To_nearest x
[DEFLOAT_FLOAT_ZEROSIGN_ROUND] Theorem
⊢ ∀x b.
defloat
(float
(zerosign float_format b (round float_format To_nearest x))) =
zerosign float_format b (round float_format To_nearest x)
[DEFLOAT_FLOAT_ZEROSIGN_ROUND_FINITE] Theorem
⊢ ∀b x.
abs x < threshold float_format ⇒
is_finite float_format
(defloat
(float
(zerosign float_format b
(round float_format To_nearest x))))
[ERROR_BOUND_NORM_STRONG] Theorem
⊢ ∀x j.
abs x < threshold float_format ∧ abs x < 2 pow SUC j / 2 pow 126 ⇒
abs (error x) ≤ 2 pow j / 2 pow 150
[ERROR_BOUND_NORM_STRONG_NORMALIZE] Theorem
⊢ ∀x. normalizes x ⇒ ∃j. abs (error x) ≤ 2 pow j / 2 pow 150
[ERROR_IS_ZERO] Theorem
⊢ ∀a x. Finite a ∧ (Val a = x) ⇒ (error x = 0)
[EXPONENT] Theorem
⊢ ∀a. exponent a = FST (SND a)
[FLOAT_ADD] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧
abs (Val a + Val b) < threshold float_format ⇒
Finite (a + b) ∧
(Val (a + b) = Val a + Val b + error (Val a + Val b))
[FLOAT_ADD_FINITE] Theorem
⊢ ∀b a.
Finite a ∧ Finite b ∧
abs (Val a + Val b) < threshold float_format ⇒
Finite (a + b)
[FLOAT_ADD_RELATIVE] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧ normalizes (Val a + Val b) ⇒
Finite (a + b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧
(Val (a + b) = (Val a + Val b) * (1 + e))
[FLOAT_CASES] Theorem
⊢ ∀a. Isnan a ∨ Infinity a ∨ Isnormal a ∨ Isdenormal a ∨ Iszero a
[FLOAT_CASES_FINITE] Theorem
⊢ ∀a. Isnan a ∨ Infinity a ∨ Finite a
[FLOAT_DISTINCT] Theorem
⊢ ∀a. ¬(Isnan a ∧ Infinity a) ∧ ¬(Isnan a ∧ Isnormal a) ∧
¬(Isnan a ∧ Isdenormal a) ∧ ¬(Isnan a ∧ Iszero a) ∧
¬(Infinity a ∧ Isnormal a) ∧ ¬(Infinity a ∧ Isdenormal a) ∧
¬(Infinity a ∧ Iszero a) ∧ ¬(Isnormal a ∧ Isdenormal a) ∧
¬(Isnormal a ∧ Iszero a) ∧ ¬(Isdenormal a ∧ Iszero a)
[FLOAT_DISTINCT_FINITE] Theorem
⊢ ∀a. ¬(Isnan a ∧ Infinity a) ∧ ¬(Isnan a ∧ Finite a) ∧
¬(Infinity a ∧ Finite a)
[FLOAT_DIV] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧ ¬Iszero b ∧
abs (Val a / Val b) < threshold float_format ⇒
Finite (a / b) ∧
(Val (a / b) = Val a / Val b + error (Val a / Val b))
[FLOAT_DIV_RELATIVE] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧ ¬Iszero b ∧ normalizes (Val a / Val b) ⇒
Finite (a / b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧
(Val (a / b) = Val a / Val b * (1 + e))
[FLOAT_EQ] Theorem
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a == b ⇔ (Val a = Val b))
[FLOAT_EQ_REFL] Theorem
⊢ ∀a. a == a ⇔ ¬Isnan a
[FLOAT_GE] Theorem
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a ≥ b ⇔ Val a ≥ Val b)
[FLOAT_GT] Theorem
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a > b ⇔ Val a > Val b)
[FLOAT_INFINITES_DISTINCT] Theorem
⊢ ∀a. ¬(a == Plus_infinity ∧ a == Minus_infinity)
[FLOAT_INFINITIES] Theorem
⊢ ∀a. Infinity a ⇔ a == Plus_infinity ∨ a == Minus_infinity
[FLOAT_INFINITIES_SIGNED] Theorem
⊢ (sign (defloat Plus_infinity) = 0) ∧
(sign (defloat Minus_infinity) = 1)
[FLOAT_LARGEST_EXPLICIT] Theorem
⊢ largest float_format = 340282346638528859811704183484516925440
[FLOAT_LE] Theorem
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a ≤ b ⇔ Val a ≤ Val b)
[FLOAT_LT] Theorem
⊢ ∀a b. Finite a ∧ Finite b ⇒ (a < b ⇔ Val a < Val b)
[FLOAT_MUL] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧
abs (Val a * Val b) < threshold float_format ⇒
Finite (a * b) ∧
(Val (a * b) = Val a * Val b + error (Val a * Val b))
[FLOAT_MUL_FINITE] Theorem
⊢ ∀b a.
Finite a ∧ Finite b ∧
abs (Val a * Val b) < threshold float_format ⇒
Finite (a * b)
[FLOAT_MUL_RELATIVE] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧ normalizes (Val a * Val b) ⇒
Finite (a * b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧
(Val (a * b) = Val a * Val b * (1 + e))
[FLOAT_SUB] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧
abs (Val a − Val b) < threshold float_format ⇒
Finite (a − b) ∧
(Val (a − b) = Val a − Val b + error (Val a − Val b))
[FLOAT_SUB_FINITE] Theorem
⊢ ∀b a.
Finite a ∧ Finite b ∧
abs (Val a − Val b) < threshold float_format ⇒
Finite (a − b)
[FLOAT_SUB_RELATIVE] Theorem
⊢ ∀a b.
Finite a ∧ Finite b ∧ normalizes (Val a − Val b) ⇒
Finite (a − b) ∧
∃e. abs e ≤ 1 / 2 pow 24 ∧
(Val (a − b) = (Val a − Val b) * (1 + e))
[FLOAT_THRESHOLD_EXPLICIT] Theorem
⊢ threshold float_format = 340282356779733661637539395458142568448
[FRACTION] Theorem
⊢ ∀a. fraction a = SND (SND a)
[INFINITY_IS_INFINITY] Theorem
⊢ Infinity Plus_infinity ∧ Infinity Minus_infinity
[INFINITY_NOT_NAN] Theorem
⊢ ¬Isnan Plus_infinity ∧ ¬Isnan Minus_infinity
[ISFINITE] Theorem
⊢ ∀a. Finite a ⇔ is_finite float_format (defloat a)
[IS_CLOSEST_EXISTS] Theorem
⊢ ∀v x s. FINITE s ⇒ s ≠ ∅ ⇒ ∃a. is_closest v s x a
[IS_FINITE_CLOSEST] Theorem
⊢ ∀X v p x. is_finite X (closest v p {a | is_finite X a} x)
[IS_FINITE_EXPLICIT] Theorem
⊢ ∀a. is_finite float_format a ⇔
sign a < 2 ∧ exponent a < 255 ∧ fraction a < 8388608
[IS_FINITE_FINITE] Theorem
⊢ ∀X. FINITE {a | is_finite X a}
[IS_FINITE_NONEMPTY] Theorem
⊢ {a | is_finite X a} ≠ ∅
[IS_VALID] Theorem
⊢ ∀X a.
is_valid X a ⇔
sign a < 2 ∧ exponent a < 2 ** expwidth X ∧
fraction a < 2 ** fracwidth X
[IS_VALID_CLOSEST] Theorem
⊢ ∀X v p x. is_valid X (closest v p {a | is_finite X a} x)
[IS_VALID_DEFLOAT] Theorem
⊢ ∀a. is_valid float_format (defloat a)
[IS_VALID_FINITE] Theorem
⊢ FINITE {a | is_valid X a}
[IS_VALID_NONEMPTY] Theorem
⊢ {a | is_valid X a} ≠ ∅
[IS_VALID_ROUND] Theorem
⊢ ∀X x. is_valid X (round X To_nearest x)
[IS_VALID_SPECIAL] Theorem
⊢ ∀X. is_valid X (minus_infinity X) ∧ is_valid X (plus_infinity X) ∧
is_valid X (topfloat X) ∧ is_valid X (bottomfloat X) ∧
is_valid X (plus_zero X) ∧ is_valid X (minus_zero X)
[REAL_IN_BINADE] Theorem
⊢ ∀x. normalizes x ⇒
∃j. j ≤ emax float_format − 2 ∧ 2 pow j / 2 pow 126 ≤ abs x ∧
abs x < 2 pow SUC j / 2 pow 126
[RELATIVE_ERROR] Theorem
⊢ ∀x. normalizes x ⇒
∃e. abs e ≤ 1 / 2 pow 24 ∧
(Val (float (round float_format To_nearest x)) =
x * (1 + e))
[SIGN] Theorem
⊢ ∀a. sign a = FST a
[VALOF] Theorem
⊢ ∀X a.
valof X a =
if exponent a = 0 then
-1 pow sign a * (2 / 2 pow bias X) *
(&fraction a / 2 pow fracwidth X)
else
-1 pow sign a * (2 pow exponent a / 2 pow bias X) *
(1 + &fraction a / 2 pow fracwidth X)
[VALOF_DEFLOAT_FLOAT_ZEROSIGN_ROUND] Theorem
⊢ ∀x b.
valof float_format
(defloat
(float
(zerosign float_format b
(round float_format To_nearest x)))) =
valof float_format (round float_format To_nearest x)
[VAL_FINITE] Theorem
⊢ ∀a. Finite a ⇒ abs (Val a) ≤ largest float_format
[VAL_THRESHOLD] Theorem
⊢ ∀a. Finite a ⇒ abs (Val a) < threshold float_format
[ZERO_IS_ZERO] Theorem
⊢ Iszero Plus_zero ∧ Iszero Minus_zero
[ZERO_NOT_NAN] Theorem
⊢ ¬Isnan Plus_zero ∧ ¬Isnan Minus_zero
*)
end
HOL 4, Kananaskis-14