Structure fixedPointTheory
signature fixedPointTheory =
sig
type thm = Thm.thm
(* Definitions *)
val closed_def : thm
val dense_def : thm
val empty_def : thm
val fnsum_def : thm
val gfp_def : thm
val lfp_def : thm
val monotone_def : thm
(* Theorems *)
val SUBSET_complete : thm
val SUBSET_poset : thm
val empty_monotone : thm
val fnsum_ASSOC : thm
val fnsum_COMM : thm
val fnsum_SUBSET : thm
val fnsum_empty : thm
val fnsum_monotone : thm
val gfp_coinduction : thm
val gfp_greatest_dense : thm
val gfp_greatest_fixedpoint : thm
val gfp_poset_gfp : thm
val gfp_strong_coinduction : thm
val lfp_empty : thm
val lfp_fixedpoint : thm
val lfp_fnsum : thm
val lfp_induction : thm
val lfp_least_closed : thm
val lfp_poset_lfp : thm
val lfp_rule_applied : thm
val lfp_strong_induction : thm
val monotonic_monotone : thm
val fixedPoint_grammars : type_grammar.grammar * term_grammar.grammar
(*
[poset] Parent theory of "fixedPoint"
[pred_set] Parent theory of "fixedPoint"
[closed_def] Definition
⊢ ∀f X. closed f X ⇔ f X ⊆ X
[dense_def] Definition
⊢ ∀f X. dense f X ⇔ X ⊆ f X
[empty_def] Definition
⊢ empty = (λX. ∅)
[fnsum_def] Definition
⊢ ∀f1 f2 X. fnsum f1 f2 X = f1 X ∪ f2 X
[gfp_def] Definition
⊢ ∀f. gfp f = BIGUNION {X | X ⊆ f X}
[lfp_def] Definition
⊢ ∀f. lfp f = BIGINTER {X | f X ⊆ X}
[monotone_def] Definition
⊢ ∀f. monotone f ⇔ ∀X Y. X ⊆ Y ⇒ f X ⊆ f Y
[SUBSET_complete] Theorem
⊢ complete (𝕌(:α -> bool),$SUBSET)
[SUBSET_poset] Theorem
⊢ poset (𝕌(:α -> bool),$SUBSET)
[empty_monotone] Theorem
⊢ monotone empty
[fnsum_ASSOC] Theorem
⊢ ∀f g h. fnsum f (fnsum g h) = fnsum (fnsum f g) h
[fnsum_COMM] Theorem
⊢ ∀f g. fnsum f g = fnsum g f
[fnsum_SUBSET] Theorem
⊢ ∀f g X. f X ⊆ fnsum f g X ∧ g X ⊆ fnsum f g X
[fnsum_empty] Theorem
⊢ ∀f. fnsum f empty = f ∧ fnsum empty f = f
[fnsum_monotone] Theorem
⊢ ∀f1 f2. monotone f1 ∧ monotone f2 ⇒ monotone (fnsum f1 f2)
[gfp_coinduction] Theorem
⊢ ∀f. monotone f ⇒ ∀X. X ⊆ f X ⇒ X ⊆ gfp f
[gfp_greatest_dense] Theorem
⊢ ∀f. monotone f ⇒ dense f (gfp f) ∧ ∀X. dense f X ⇒ X ⊆ gfp f
[gfp_greatest_fixedpoint] Theorem
⊢ ∀f. monotone f ⇒ f (gfp f) = gfp f ∧ ∀X. f X = X ⇒ X ⊆ gfp f
[gfp_poset_gfp] Theorem
⊢ monotone f ⇒ po_gfp (𝕌(:α -> bool),$SUBSET) f (gfp f)
[gfp_strong_coinduction] Theorem
⊢ ∀f. monotone f ⇒ ∀X. X ⊆ f (X ∪ gfp f) ⇒ X ⊆ gfp f
[lfp_empty] Theorem
⊢ ∀f x. monotone f ∧ x ∈ f ∅ ⇒ x ∈ lfp f
[lfp_fixedpoint] Theorem
⊢ ∀f. monotone f ⇒ f (lfp f) = lfp f ∧ ∀X. f X = X ⇒ lfp f ⊆ X
[lfp_fnsum] Theorem
⊢ ∀f1 f2.
monotone f1 ∧ monotone f2 ⇒
lfp f1 ⊆ lfp (fnsum f1 f2) ∧ lfp f2 ⊆ lfp (fnsum f1 f2)
[lfp_induction] Theorem
⊢ ∀f. monotone f ⇒ ∀X. f X ⊆ X ⇒ lfp f ⊆ X
[lfp_least_closed] Theorem
⊢ ∀f. monotone f ⇒ closed f (lfp f) ∧ ∀X. closed f X ⇒ lfp f ⊆ X
[lfp_poset_lfp] Theorem
⊢ monotone f ⇒ po_lfp (𝕌(:α -> bool),$SUBSET) f (lfp f)
[lfp_rule_applied] Theorem
⊢ ∀f X y. monotone f ∧ X ⊆ lfp f ∧ y ∈ f X ⇒ y ∈ lfp f
[lfp_strong_induction] Theorem
⊢ ∀f. monotone f ⇒ ∀X. f (X ∩ lfp f) ⊆ X ⇒ lfp f ⊆ X
[monotonic_monotone] Theorem
⊢ monotonic (𝕌(:α -> bool),$SUBSET) f ⇔ monotone f
*)
end
HOL 4, Kananaskis-14