Structure finite_mapTheory
signature finite_mapTheory =
sig
type thm = Thm.thm
(* Definitions *)
val DRESTRICT_DEF : thm
val FAPPLY_DEF : thm
val FCARD_DEF : thm
val FDIFF_def : thm
val FDOM_DEF : thm
val FEMPTY_DEF : thm
val FEVERY_DEF : thm
val FLOOKUP_DEF : thm
val FMAP_MAP2_def : thm
val FMERGE_DEF : thm
val FRANGE_DEF : thm
val FUNION_DEF : thm
val FUN_FMAP_DEF : thm
val FUPDATE_DEF : thm
val FUPDATE_LIST : thm
val ITFMAPR_def : thm
val ITFMAP_def : thm
val MAP_KEYS_def : thm
val RRESTRICT_DEF : thm
val SUBMAP_DEF : thm
val f_o_DEF : thm
val f_o_f_DEF : thm
val fmap_EQ_UPTO_def : thm
val fmap_ISO_DEF : thm
val fmap_TY_DEF : thm
val fmap_domsub : thm
val fmap_inverse_def : thm
val fmap_rel_def : thm
val fmap_size_def : thm
val fmlfpR_def : thm
val fp_soluble_def : thm
val is_fmap_def : thm
val lbound_def : thm
val o_f_DEF : thm
(* Theorems *)
val DISJOINT_FEVERY_FUNION : thm
val DOMSUB_COMMUTES : thm
val DOMSUB_FAPPLY : thm
val DOMSUB_FAPPLY_NEQ : thm
val DOMSUB_FAPPLY_THM : thm
val DOMSUB_FEMPTY : thm
val DOMSUB_FLOOKUP : thm
val DOMSUB_FLOOKUP_NEQ : thm
val DOMSUB_FLOOKUP_THM : thm
val DOMSUB_FUNION : thm
val DOMSUB_FUPDATE : thm
val DOMSUB_FUPDATE_NEQ : thm
val DOMSUB_FUPDATE_THM : thm
val DOMSUB_IDEM : thm
val DOMSUB_MAP_KEYS : thm
val DOMSUB_NOT_IN_DOM : thm
val DOMSUB_SUBMAP : thm
val DRESTRICTED_FUNION : thm
val DRESTRICT_DOMSUB : thm
val DRESTRICT_DRESTRICT : thm
val DRESTRICT_EQ_DRESTRICT : thm
val DRESTRICT_EQ_DRESTRICT_SAME : thm
val DRESTRICT_EQ_FUNION : thm
val DRESTRICT_FDOM : thm
val DRESTRICT_FEMPTY : thm
val DRESTRICT_FUNION : thm
val DRESTRICT_FUNION_DRESTRICT_COMPL : thm
val DRESTRICT_FUNION_SAME : thm
val DRESTRICT_FUNION_SUBSET : thm
val DRESTRICT_FUPDATE : thm
val DRESTRICT_IDEMPOT : thm
val DRESTRICT_IS_FEMPTY : thm
val DRESTRICT_MAP_KEYS_IMAGE : thm
val DRESTRICT_SUBMAP : thm
val DRESTRICT_SUBMAP_gen : thm
val DRESTRICT_SUBSET : thm
val DRESTRICT_SUBSET_SUBMAP : thm
val DRESTRICT_SUBSET_SUBMAP_gen : thm
val DRESTRICT_UNIV : thm
val EQ_FDOM_SUBMAP : thm
val FAPPLY_FUPDATE : thm
val FAPPLY_FUPDATE_THM : thm
val FAPPLY_f_o : thm
val FCARD_0_FEMPTY : thm
val FCARD_FEMPTY : thm
val FCARD_FUPDATE : thm
val FCARD_SUC : thm
val FDOM_DOMSUB : thm
val FDOM_DRESTRICT : thm
val FDOM_EQ_EMPTY : thm
val FDOM_EQ_EMPTY_SYM : thm
val FDOM_EQ_FDOM_FUPDATE : thm
val FDOM_FDIFF : thm
val FDOM_FEMPTY : thm
val FDOM_FINITE : thm
val FDOM_FMAP : thm
val FDOM_FMERGE : thm
val FDOM_FOLDR_DOMSUB : thm
val FDOM_FUNION : thm
val FDOM_FUPDATE : thm
val FDOM_FUPDATE_LIST : thm
val FDOM_F_FEMPTY1 : thm
val FDOM_f_o : thm
val FDOM_o_f : thm
val FEMPTY_FUPDATE_EQ : thm
val FEMPTY_SUBMAP : thm
val FEVERY_ALL_FLOOKUP : thm
val FEVERY_DRESTRICT_COMPL : thm
val FEVERY_FEMPTY : thm
val FEVERY_FLOOKUP : thm
val FEVERY_FUPDATE : thm
val FEVERY_FUPDATE_LIST : thm
val FEVERY_STRENGTHEN_THM : thm
val FEVERY_SUBMAP : thm
val FEVERY_o_f : thm
val FINITE_FRANGE : thm
val FINITE_PRED_11 : thm
val FLOOKUP_DRESTRICT : thm
val FLOOKUP_EMPTY : thm
val FLOOKUP_EXT : thm
val FLOOKUP_FOLDR_UPDATE : thm
val FLOOKUP_FUNION : thm
val FLOOKUP_FUN_FMAP : thm
val FLOOKUP_MAP_KEYS : thm
val FLOOKUP_MAP_KEYS_MAPPED : thm
val FLOOKUP_SUBMAP : thm
val FLOOKUP_UPDATE : thm
val FLOOKUP_o_f : thm
val FMAP_MAP2_FEMPTY : thm
val FMAP_MAP2_FUPDATE : thm
val FMAP_MAP2_THM : thm
val FMEQ_ENUMERATE_CASES : thm
val FMEQ_SINGLE_SIMPLE_DISJ_ELIM : thm
val FMEQ_SINGLE_SIMPLE_ELIM : thm
val FMERGE_ASSOC : thm
val FMERGE_COMM : thm
val FMERGE_DOMSUB : thm
val FMERGE_DRESTRICT : thm
val FMERGE_EQ_FEMPTY : thm
val FMERGE_FEMPTY : thm
val FMERGE_FUNION : thm
val FMERGE_NO_CHANGE : thm
val FM_PULL_APART : thm
val FOLDL2_FUPDATE_LIST : thm
val FOLDL2_FUPDATE_LIST_paired : thm
val FOLDL_FUPDATE_LIST : thm
val FRANGE_DOMSUB_SUBSET : thm
val FRANGE_DRESTRICT_SUBSET : thm
val FRANGE_FEMPTY : thm
val FRANGE_FLOOKUP : thm
val FRANGE_FMAP : thm
val FRANGE_FUNION : thm
val FRANGE_FUNION_SUBSET : thm
val FRANGE_FUPDATE : thm
val FRANGE_FUPDATE_DOMSUB : thm
val FRANGE_FUPDATE_LIST_SUBSET : thm
val FRANGE_FUPDATE_SUBSET : thm
val FUNION_ASSOC : thm
val FUNION_COMM : thm
val FUNION_EQ : thm
val FUNION_EQ_FEMPTY : thm
val FUNION_EQ_IMPL : thm
val FUNION_FEMPTY_1 : thm
val FUNION_FEMPTY_2 : thm
val FUNION_FMERGE : thm
val FUNION_FUPDATE_1 : thm
val FUNION_FUPDATE_2 : thm
val FUNION_IDEMPOT : thm
val FUN_FMAP_EMPTY : thm
val FUPD11_SAME_BASE : thm
val FUPD11_SAME_KEY_AND_BASE : thm
val FUPD11_SAME_NEW_KEY : thm
val FUPD11_SAME_UPDATE : thm
val FUPDATE_COMMUTES : thm
val FUPDATE_DRESTRICT : thm
val FUPDATE_ELIM : thm
val FUPDATE_EQ : thm
val FUPDATE_EQ_FUNION : thm
val FUPDATE_EQ_FUPDATE_LIST : thm
val FUPDATE_FUPDATE_LIST_COMMUTES : thm
val FUPDATE_FUPDATE_LIST_MEM : thm
val FUPDATE_LIST_ALL_DISTINCT_APPLY_MEM : thm
val FUPDATE_LIST_ALL_DISTINCT_PERM : thm
val FUPDATE_LIST_ALL_DISTINCT_REVERSE : thm
val FUPDATE_LIST_APPEND : thm
val FUPDATE_LIST_APPEND_COMMUTES : thm
val FUPDATE_LIST_APPLY_HO_THM : thm
val FUPDATE_LIST_APPLY_MEM : thm
val FUPDATE_LIST_APPLY_NOT_MEM : thm
val FUPDATE_LIST_APPLY_NOT_MEM_matchable : thm
val FUPDATE_LIST_CANCEL : thm
val FUPDATE_LIST_EQ_FEMPTY : thm
val FUPDATE_LIST_SAME_KEYS_UNWIND : thm
val FUPDATE_LIST_SAME_UPDATE : thm
val FUPDATE_LIST_SNOC : thm
val FUPDATE_LIST_THM : thm
val FUPDATE_PURGE : thm
val FUPDATE_PURGE' : thm
val FUPDATE_SAME_APPLY : thm
val FUPDATE_SAME_LIST_APPLY : thm
val FUPD_SAME_KEY_UNWIND : thm
val IMAGE_FRANGE : thm
val IN_FDOM_FOLDR_UNION : thm
val IN_FRANGE : thm
val IN_FRANGE_DOMSUB_suff : thm
val IN_FRANGE_DRESTRICT_suff : thm
val IN_FRANGE_FLOOKUP : thm
val IN_FRANGE_FUNION_suff : thm
val IN_FRANGE_FUPDATE_LIST_suff : thm
val IN_FRANGE_FUPDATE_suff : thm
val IN_FRANGE_o_f_suff : thm
val ITFMAPR_FEMPTY : thm
val ITFMAPR_cases : thm
val ITFMAPR_ind : thm
val ITFMAPR_rules : thm
val ITFMAPR_strongind : thm
val ITFMAPR_total : thm
val ITFMAPR_unique : thm
val ITFMAP_FEMPTY : thm
val ITFMAP_thm : thm
val LEAST_NOTIN_FDOM : thm
val MAP_KEYS_BIJ_LINV : thm
val MAP_KEYS_FEMPTY : thm
val MAP_KEYS_FUPDATE : thm
val MAP_KEYS_using_LINV : thm
val MAP_KEYS_witness : thm
val NOT_EQ_FAPPLY : thm
val NOT_EQ_FEMPTY_FUPDATE : thm
val NOT_FDOM_DRESTRICT : thm
val NOT_FDOM_FAPPLY_FEMPTY : thm
val NUM_NOT_IN_FDOM : thm
val RRESTRICT_FEMPTY : thm
val RRESTRICT_FUPDATE : thm
val SAME_KEY_UPDATES_DIFFER : thm
val STRONG_DRESTRICT_FUPDATE : thm
val STRONG_DRESTRICT_FUPDATE_THM : thm
val SUBMAP_ANTISYM : thm
val SUBMAP_DOMSUB : thm
val SUBMAP_DOMSUB_gen : thm
val SUBMAP_DRESTRICT : thm
val SUBMAP_DRESTRICT_MONOTONE : thm
val SUBMAP_FDOM_SUBSET : thm
val SUBMAP_FEMPTY : thm
val SUBMAP_FLOOKUP_EQN : thm
val SUBMAP_FRANGE : thm
val SUBMAP_FUNION : thm
val SUBMAP_FUNION_ABSORPTION : thm
val SUBMAP_FUNION_EQ : thm
val SUBMAP_FUNION_ID : thm
val SUBMAP_FUPDATE : thm
val SUBMAP_FUPDATE_EQN : thm
val SUBMAP_FUPDATE_FLOOKUP : thm
val SUBMAP_REFL : thm
val SUBMAP_TRANS : thm
val SUBMAP_mono_FUPDATE : thm
val WF_lbound_inv_SUBSET : thm
val disjoint_drestrict : thm
val drestrict_iter_list : thm
val f_o_ASSOC : thm
val f_o_FEMPTY : thm
val f_o_FUPDATE : thm
val f_o_f_FEMPTY_1 : thm
val f_o_f_FEMPTY_2 : thm
val f_o_f_FUPDATE_compose : thm
val fdom_fupdate_list2 : thm
val fevery_funion : thm
val flookup_thm : thm
val fmap_CASES : thm
val fmap_EQ : thm
val fmap_EQ_THM : thm
val fmap_EQ_UPTO___EMPTY : thm
val fmap_EQ_UPTO___EQ : thm
val fmap_EQ_UPTO___FUPDATE_BOTH : thm
val fmap_EQ_UPTO___FUPDATE_BOTH___NO_DELETE : thm
val fmap_EQ_UPTO___FUPDATE_SING : thm
val fmap_EXT : thm
val fmap_INDUCT : thm
val fmap_SIMPLE_INDUCT : thm
val fmap_cases_NOTIN : thm
val fmap_eq_flookup : thm
val fmap_rel_FEMPTY : thm
val fmap_rel_FEMPTY2 : thm
val fmap_rel_FLOOKUP_imp : thm
val fmap_rel_FUNION_rels : thm
val fmap_rel_FUPDATE_I : thm
val fmap_rel_FUPDATE_LIST_same : thm
val fmap_rel_FUPDATE_same : thm
val fmap_rel_OPTREL_FLOOKUP : thm
val fmap_rel_mono : thm
val fmap_rel_refl : thm
val fmap_rel_sym : thm
val fmap_rel_trans : thm
val fmap_to_list : thm
val fmlfpR_cases : thm
val fmlfpR_ind : thm
val fmlfpR_lastpass : thm
val fmlfpR_rules : thm
val fmlfpR_strongind : thm
val fmlfpR_total : thm
val fmlfpR_total_lemma : thm
val fp_soluble_FOLDR1 : thm
val fupdate_list_foldl : thm
val fupdate_list_foldr : thm
val fupdate_list_map : thm
val is_fmap_cases : thm
val is_fmap_ind : thm
val is_fmap_rules : thm
val is_fmap_strongind : thm
val o_f_DOMSUB : thm
val o_f_FAPPLY : thm
val o_f_FDOM : thm
val o_f_FEMPTY : thm
val o_f_FRANGE : thm
val o_f_FUNION : thm
val o_f_FUPDATE : thm
val o_f_cong : thm
val o_f_id : thm
val o_f_o_f : thm
val finite_map_grammars : type_grammar.grammar * term_grammar.grammar
(*
[sorting] Parent theory of "finite_map"
[DRESTRICT_DEF] Definition
⊢ ∀f r.
FDOM (DRESTRICT f r) = FDOM f ∩ r ∧
∀x. DRESTRICT f r ' x =
if x ∈ FDOM f ∩ r then f ' x else FEMPTY ' x
[FAPPLY_DEF] Definition
⊢ ∀f x. f ' x = OUTL (fmap_REP f x)
[FCARD_DEF] Definition
⊢ ∀fm. FCARD fm = CARD (FDOM fm)
[FDIFF_def] Definition
⊢ ∀f1 s. FDIFF f1 s = DRESTRICT f1 (COMPL s)
[FDOM_DEF] Definition
⊢ ∀f x. FDOM f x ⇔ ISL (fmap_REP f x)
[FEMPTY_DEF] Definition
⊢ FEMPTY = fmap_ABS (λa. INR ())
[FEVERY_DEF] Definition
⊢ ∀P f. FEVERY P f ⇔ ∀x. x ∈ FDOM f ⇒ P (x,f ' x)
[FLOOKUP_DEF] Definition
⊢ ∀f x. FLOOKUP f x = if x ∈ FDOM f then SOME (f ' x) else NONE
[FMAP_MAP2_def] Definition
⊢ ∀f m. FMAP_MAP2 f m = FUN_FMAP (λx. f (x,m ' x)) (FDOM m)
[FMERGE_DEF] Definition
⊢ ∀m f g.
FDOM (FMERGE m f g) = FDOM f ∪ FDOM g ∧
∀x. FMERGE m f g ' x =
if x ∉ FDOM f then g ' x
else if x ∉ FDOM g then f ' x
else m (f ' x) (g ' x)
[FRANGE_DEF] Definition
⊢ ∀f. FRANGE f = {y | ∃x. x ∈ FDOM f ∧ f ' x = y}
[FUNION_DEF] Definition
⊢ ∀f g.
FDOM (f ⊌ g) = FDOM f ∪ FDOM g ∧
∀x. (f ⊌ g) ' x = if x ∈ FDOM f then f ' x else g ' x
[FUN_FMAP_DEF] Definition
⊢ ∀f P.
FINITE P ⇒
FDOM (FUN_FMAP f P) = P ∧ ∀x. x ∈ P ⇒ FUN_FMAP f P ' x = f x
[FUPDATE_DEF] Definition
⊢ ∀f x y.
f |+ (x,y) = fmap_ABS (λa. if a = x then INL y else fmap_REP f a)
[FUPDATE_LIST] Definition
⊢ $|++ = FOLDL $|+
[ITFMAPR_def] Definition
⊢ ITFMAPR =
(λf a0 a1 a2.
∀ITFMAPR'.
(∀a0 a1 a2.
a0 = FEMPTY ∧ a2 = a1 ∨
(∃A2 k v fm.
a0 = fm |+ (k,v) ∧ a2 = f k v A2 ∧ k ∉ FDOM fm ∧
ITFMAPR' fm a1 A2) ⇒
ITFMAPR' a0 a1 a2) ⇒
ITFMAPR' a0 a1 a2)
[ITFMAP_def] Definition
⊢ ∀f fm A0. ITFMAP f fm A0 = @A. ITFMAPR f fm A0 A
[MAP_KEYS_def] Definition
⊢ ∀f fm.
FDOM (MAP_KEYS f fm) = IMAGE f (FDOM fm) ∧
(INJ f (FDOM fm) 𝕌(:β) ⇒
∀x. x ∈ FDOM fm ⇒ MAP_KEYS f fm ' (f x) = fm ' x)
[RRESTRICT_DEF] Definition
⊢ ∀f r.
FDOM (RRESTRICT f r) = {x | x ∈ FDOM f ∧ f ' x ∈ r} ∧
∀x. RRESTRICT f r ' x =
if x ∈ FDOM f ∧ f ' x ∈ r then f ' x else FEMPTY ' x
[SUBMAP_DEF] Definition
⊢ ∀f g. f ⊑ g ⇔ ∀x. x ∈ FDOM f ⇒ x ∈ FDOM g ∧ f ' x = g ' x
[f_o_DEF] Definition
⊢ ∀f g. f f_o g = f f_o_f FUN_FMAP g {x | g x ∈ FDOM f}
[f_o_f_DEF] Definition
⊢ ∀f g.
FDOM (f f_o_f g) = FDOM g ∩ {x | g ' x ∈ FDOM f} ∧
∀x. x ∈ FDOM (f f_o_f g) ⇒ (f f_o_f g) ' x = f ' (g ' x)
[fmap_EQ_UPTO_def] Definition
⊢ ∀f1 f2 vs.
fmap_EQ_UPTO f1 f2 vs ⇔
FDOM f1 ∩ COMPL vs = FDOM f2 ∩ COMPL vs ∧
∀x. x ∈ FDOM f1 ∩ COMPL vs ⇒ f1 ' x = f2 ' x
[fmap_ISO_DEF] Definition
⊢ (∀a. fmap_ABS (fmap_REP a) = a) ∧
∀r. is_fmap r ⇔ fmap_REP (fmap_ABS r) = r
[fmap_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION is_fmap rep
[fmap_domsub] Definition
⊢ ∀fm k. fm \\ k = DRESTRICT fm (COMPL {k})
[fmap_inverse_def] Definition
⊢ ∀m1 m2.
fmap_inverse m1 m2 ⇔
∀k. k ∈ FDOM m1 ⇒
∃v. FLOOKUP m1 k = SOME v ∧ FLOOKUP m2 v = SOME k
[fmap_rel_def] Definition
⊢ ∀R f1 f2.
fmap_rel R f1 f2 ⇔
FDOM f2 = FDOM f1 ∧ ∀x. x ∈ FDOM f1 ⇒ R (f1 ' x) (f2 ' x)
[fmap_size_def] Definition
⊢ ∀kz vz fm.
fmap_size kz vz fm = ∑ (λk. kz k + vz (fm ' k)) (FDOM fm)
[fmlfpR_def] Definition
⊢ fmlfpR =
(λf fm0 a0 a1 a2 a3.
∀fmlfpR'.
(∀a0 a1 a2 a3.
a1 = FEMPTY ∧ a3 = a0 ∧ a0 = a2 ∨
a1 = FEMPTY ∧ fmlfpR' a2 fm0 a2 a3 ∧ a0 ≠ a2 ∨
(∃fm k v.
a1 = fm |+ (k,v) ∧ fmlfpR' a0 (fm \\ k) (f k v a2) a3) ⇒
fmlfpR' a0 a1 a2 a3) ⇒
fmlfpR' a0 a1 a2 a3)
[fp_soluble_def] Definition
⊢ ∀R P fm f.
fp_soluble R P fm f ⇔
transitive R ∧ WF (lbound P Rᵀ) ∧
(∀k v A.
FLOOKUP fm k = SOME v ∧ RC R A P ⇒
RC R A (f k v A) ∧ RC R (f k v A) P) ∧
∀A. R A P ⇒ ∃k v. FLOOKUP fm k = SOME v ∧ f k v A ≠ A
[is_fmap_def] Definition
⊢ is_fmap =
(λa0.
∀is_fmap'.
(∀a0.
a0 = (λa. INR ()) ∨
(∃f a b.
a0 = (λx. if x = a then INL b else f x) ∧ is_fmap' f) ⇒
is_fmap' a0) ⇒
is_fmap' a0)
[lbound_def] Definition
⊢ ∀l R x y. lbound l R x y ⇔ R꙳ l x ∧ R꙳ l y ∧ R x y
[o_f_DEF] Definition
⊢ ∀f g.
FDOM (f o_f g) = FDOM g ∧
∀x. x ∈ FDOM (f o_f g) ⇒ (f o_f g) ' x = f (g ' x)
[DISJOINT_FEVERY_FUNION] Theorem
⊢ DISJOINT (FDOM m1) (FDOM m2) ⇒
(FEVERY P (m1 ⊌ m2) ⇔ FEVERY P m1 ∧ FEVERY P m2)
[DOMSUB_COMMUTES] Theorem
⊢ fm \\ k1 \\ k2 = fm \\ k2 \\ k1
[DOMSUB_FAPPLY] Theorem
⊢ ∀fm k. (fm \\ k) ' k = FEMPTY ' k
[DOMSUB_FAPPLY_NEQ] Theorem
⊢ ∀fm k1 k2. k1 ≠ k2 ⇒ (fm \\ k1) ' k2 = fm ' k2
[DOMSUB_FAPPLY_THM] Theorem
⊢ ∀fm k1 k2.
(fm \\ k1) ' k2 = if k1 = k2 then FEMPTY ' k2 else fm ' k2
[DOMSUB_FEMPTY] Theorem
⊢ ∀k. FEMPTY \\ k = FEMPTY
[DOMSUB_FLOOKUP] Theorem
⊢ ∀fm k. FLOOKUP (fm \\ k) k = NONE
[DOMSUB_FLOOKUP_NEQ] Theorem
⊢ ∀fm k1 k2. k1 ≠ k2 ⇒ FLOOKUP (fm \\ k1) k2 = FLOOKUP fm k2
[DOMSUB_FLOOKUP_THM] Theorem
⊢ ∀fm k1 k2.
FLOOKUP (fm \\ k1) k2 = if k1 = k2 then NONE else FLOOKUP fm k2
[DOMSUB_FUNION] Theorem
⊢ (f ⊌ g) \\ k = f \\ k ⊌ g \\ k
[DOMSUB_FUPDATE] Theorem
⊢ ∀fm k v. fm |+ (k,v) \\ k = fm \\ k
[DOMSUB_FUPDATE_NEQ] Theorem
⊢ ∀fm k1 k2 v. k1 ≠ k2 ⇒ fm |+ (k1,v) \\ k2 = fm \\ k2 |+ (k1,v)
[DOMSUB_FUPDATE_THM] Theorem
⊢ ∀fm k1 k2 v.
fm |+ (k1,v) \\ k2 =
if k1 = k2 then fm \\ k2 else fm \\ k2 |+ (k1,v)
[DOMSUB_IDEM] Theorem
⊢ fm \\ k \\ k = fm \\ k
[DOMSUB_MAP_KEYS] Theorem
⊢ BIJ f 𝕌(:α) 𝕌(:β) ⇒ MAP_KEYS f fm \\ f s = MAP_KEYS f (fm \\ s)
[DOMSUB_NOT_IN_DOM] Theorem
⊢ k ∉ FDOM fm ⇒ fm \\ k = fm
[DOMSUB_SUBMAP] Theorem
⊢ ∀f g x. f ⊑ g ∧ x ∉ FDOM f ⇒ f ⊑ g \\ x
[DRESTRICTED_FUNION] Theorem
⊢ ∀f1 f2 s.
DRESTRICT (f1 ⊌ f2) s =
DRESTRICT f1 s ⊌ DRESTRICT f2 (s DIFF FDOM f1)
[DRESTRICT_DOMSUB] Theorem
⊢ ∀f s k. DRESTRICT f s \\ k = DRESTRICT f (s DELETE k)
[DRESTRICT_DRESTRICT] Theorem
⊢ ∀f P Q. DRESTRICT (DRESTRICT f P) Q = DRESTRICT f (P ∩ Q)
[DRESTRICT_EQ_DRESTRICT] Theorem
⊢ ∀f1 f2 s1 s2.
DRESTRICT f1 s1 = DRESTRICT f2 s2 ⇔
DRESTRICT f1 s1 ⊑ f2 ∧ DRESTRICT f2 s2 ⊑ f1 ∧
s1 ∩ FDOM f1 = s2 ∩ FDOM f2
[DRESTRICT_EQ_DRESTRICT_SAME] Theorem
⊢ DRESTRICT f1 s = DRESTRICT f2 s ⇔
s ∩ FDOM f1 = s ∩ FDOM f2 ∧
∀x. x ∈ FDOM f1 ∧ x ∈ s ⇒ f1 ' x = f2 ' x
[DRESTRICT_EQ_FUNION] Theorem
⊢ ∀h h1 h2.
DISJOINT (FDOM h1) (FDOM h2) ∧ h1 ⊌ h2 = h ⇒
h2 = DRESTRICT h (COMPL (FDOM h1))
[DRESTRICT_FDOM] Theorem
⊢ ∀f. DRESTRICT f (FDOM f) = f
[DRESTRICT_FEMPTY] Theorem
⊢ ∀r. DRESTRICT FEMPTY r = FEMPTY
[DRESTRICT_FUNION] Theorem
⊢ ∀h s1 s2. DRESTRICT h s1 ⊌ DRESTRICT h s2 = DRESTRICT h (s1 ∪ s2)
[DRESTRICT_FUNION_DRESTRICT_COMPL] Theorem
⊢ DRESTRICT f s ⊌ DRESTRICT f (COMPL s) = f
[DRESTRICT_FUNION_SAME] Theorem
⊢ ∀fm s. DRESTRICT fm s ⊌ fm = fm
[DRESTRICT_FUNION_SUBSET] Theorem
⊢ s2 ⊆ s1 ⇒ ∃h. DRESTRICT f s1 ⊌ g = DRESTRICT f s2 ⊌ h
[DRESTRICT_FUPDATE] Theorem
⊢ ∀f r x y.
DRESTRICT (f |+ (x,y)) r =
if x ∈ r then DRESTRICT f r |+ (x,y) else DRESTRICT f r
[DRESTRICT_IDEMPOT] Theorem
⊢ ∀s vs. DRESTRICT (DRESTRICT s vs) vs = DRESTRICT s vs
[DRESTRICT_IS_FEMPTY] Theorem
⊢ ∀f. DRESTRICT f ∅ = FEMPTY
[DRESTRICT_MAP_KEYS_IMAGE] Theorem
⊢ INJ f 𝕌(:α) 𝕌(:β) ⇒
DRESTRICT (MAP_KEYS f fm) (IMAGE f s) = MAP_KEYS f (DRESTRICT fm s)
[DRESTRICT_SUBMAP] Theorem
⊢ ∀f r. DRESTRICT f r ⊑ f
[DRESTRICT_SUBMAP_gen] Theorem
⊢ f ⊑ g ⇒ DRESTRICT f P ⊑ g
[DRESTRICT_SUBSET] Theorem
⊢ ∀f1 f2 s t.
DRESTRICT f1 s = DRESTRICT f2 s ∧ t ⊆ s ⇒
DRESTRICT f1 t = DRESTRICT f2 t
[DRESTRICT_SUBSET_SUBMAP] Theorem
⊢ s1 ⊆ s2 ⇒ DRESTRICT f s1 ⊑ DRESTRICT f s2
[DRESTRICT_SUBSET_SUBMAP_gen] Theorem
⊢ ∀f1 f2 s t.
DRESTRICT f1 s ⊑ DRESTRICT f2 s ∧ t ⊆ s ⇒
DRESTRICT f1 t ⊑ DRESTRICT f2 t
[DRESTRICT_UNIV] Theorem
⊢ ∀f. DRESTRICT f 𝕌(:α) = f
[EQ_FDOM_SUBMAP] Theorem
⊢ f = g ⇔ f ⊑ g ∧ FDOM f = FDOM g
[FAPPLY_FUPDATE] Theorem
⊢ ∀f x y. (f |+ (x,y)) ' x = y
[FAPPLY_FUPDATE_THM] Theorem
⊢ ∀f a b x. (f |+ (a,b)) ' x = if x = a then b else f ' x
[FAPPLY_f_o] Theorem
⊢ ∀f g.
FINITE {x | g x ∈ FDOM f} ⇒
∀x. x ∈ FDOM (f f_o g) ⇒ (f f_o g) ' x = f ' (g x)
[FCARD_0_FEMPTY] Theorem
⊢ ∀f. FCARD f = 0 ⇔ f = FEMPTY
[FCARD_FEMPTY] Theorem
⊢ FCARD FEMPTY = 0
[FCARD_FUPDATE] Theorem
⊢ ∀fm a b.
FCARD (fm |+ (a,b)) =
if a ∈ FDOM fm then FCARD fm else 1 + FCARD fm
[FCARD_SUC] Theorem
⊢ ∀f n.
FCARD f = SUC n ⇔
∃f' x y. x ∉ FDOM f' ∧ FCARD f' = n ∧ f = f' |+ (x,y)
[FDOM_DOMSUB] Theorem
⊢ ∀fm k. FDOM (fm \\ k) = FDOM fm DELETE k
[FDOM_DRESTRICT] Theorem
⊢ ∀f r x. FDOM (DRESTRICT f r) = FDOM f ∩ r
[FDOM_EQ_EMPTY] Theorem
⊢ ∀f. FDOM f = ∅ ⇔ f = FEMPTY
[FDOM_EQ_EMPTY_SYM] Theorem
⊢ ∀f. ∅ = FDOM f ⇔ f = FEMPTY
[FDOM_EQ_FDOM_FUPDATE] Theorem
⊢ ∀f x. x ∈ FDOM f ⇒ ∀y. FDOM (f |+ (x,y)) = FDOM f
[FDOM_FDIFF] Theorem
⊢ x ∈ FDOM (FDIFF refs f2) ⇔ x ∈ FDOM refs ∧ x ∉ f2
[FDOM_FEMPTY] Theorem
⊢ FDOM FEMPTY = ∅
[FDOM_FINITE] Theorem
⊢ ∀fm. FINITE (FDOM fm)
[FDOM_FMAP] Theorem
⊢ ∀f s. FINITE s ⇒ FDOM (FUN_FMAP f s) = s
[FDOM_FMERGE] Theorem
⊢ ∀m f g. FDOM (FMERGE m f g) = FDOM f ∪ FDOM g
[FDOM_FOLDR_DOMSUB] Theorem
⊢ ∀ls fm. FDOM (FOLDR (λk m. m \\ k) fm ls) = FDOM fm DIFF set ls
[FDOM_FUNION] Theorem
⊢ FDOM (f ⊌ g) = FDOM f ∪ FDOM g
[FDOM_FUPDATE] Theorem
⊢ ∀f a b. FDOM (f |+ (a,b)) = a INSERT FDOM f
[FDOM_FUPDATE_LIST] Theorem
⊢ ∀kvl fm. FDOM (fm |++ kvl) = FDOM fm ∪ set (MAP FST kvl)
[FDOM_F_FEMPTY1] Theorem
⊢ ∀f. (∀a. a ∉ FDOM f) ⇔ f = FEMPTY
[FDOM_f_o] Theorem
⊢ ∀f g.
FINITE {x | g x ∈ FDOM f} ⇒ FDOM (f f_o g) = {x | g x ∈ FDOM f}
[FDOM_o_f] Theorem
⊢ ∀f g. FDOM (f o_f g) = FDOM g
[FEMPTY_FUPDATE_EQ] Theorem
⊢ ∀x y. FEMPTY |+ x = FEMPTY |+ y ⇔ x = y
[FEMPTY_SUBMAP] Theorem
⊢ ∀h. h ⊑ FEMPTY ⇔ h = FEMPTY
[FEVERY_ALL_FLOOKUP] Theorem
⊢ ∀P f. FEVERY P f ⇔ ∀k v. FLOOKUP f k = SOME v ⇒ P (k,v)
[FEVERY_DRESTRICT_COMPL] Theorem
⊢ FEVERY P (DRESTRICT (f |+ (k,v)) (COMPL s)) ⇔
(k ∉ s ⇒ P (k,v)) ∧ FEVERY P (DRESTRICT f (COMPL (k INSERT s)))
[FEVERY_FEMPTY] Theorem
⊢ ∀P. FEVERY P FEMPTY
[FEVERY_FLOOKUP] Theorem
⊢ FEVERY P f ∧ FLOOKUP f k = SOME v ⇒ P (k,v)
[FEVERY_FUPDATE] Theorem
⊢ ∀P f x y.
FEVERY P (f |+ (x,y)) ⇔
P (x,y) ∧ FEVERY P (DRESTRICT f (COMPL {x}))
[FEVERY_FUPDATE_LIST] Theorem
⊢ ALL_DISTINCT (MAP FST kvl) ⇒
(FEVERY P (fm |++ kvl) ⇔
EVERY P kvl ∧ FEVERY P (DRESTRICT fm (COMPL (set (MAP FST kvl)))))
[FEVERY_STRENGTHEN_THM] Theorem
⊢ FEVERY P FEMPTY ∧ (FEVERY P f ∧ P (x,y) ⇒ FEVERY P (f |+ (x,y)))
[FEVERY_SUBMAP] Theorem
⊢ FEVERY P fm ∧ fm0 ⊑ fm ⇒ FEVERY P fm0
[FEVERY_o_f] Theorem
⊢ ∀m P f. FEVERY P (f o_f m) ⇔ FEVERY (λx. P (FST x,f (SND x))) m
[FINITE_FRANGE] Theorem
⊢ ∀fm. FINITE (FRANGE fm)
[FINITE_PRED_11] Theorem
⊢ ∀g. (∀x y. g x = g y ⇔ x = y) ⇒ ∀f. FINITE {x | g x ∈ FDOM f}
[FLOOKUP_DRESTRICT] Theorem
⊢ ∀fm s k.
FLOOKUP (DRESTRICT fm s) k = if k ∈ s then FLOOKUP fm k else NONE
[FLOOKUP_EMPTY] Theorem
⊢ FLOOKUP FEMPTY k = NONE
[FLOOKUP_EXT] Theorem
⊢ f1 = f2 ⇔ FLOOKUP f1 = FLOOKUP f2
[FLOOKUP_FOLDR_UPDATE] Theorem
⊢ ALL_DISTINCT (MAP FST kvl) ∧ DISJOINT (set (MAP FST kvl)) (FDOM fm) ⇒
(FLOOKUP (FOLDR (flip $|+) fm kvl) k = SOME v ⇔
MEM (k,v) kvl ∨ FLOOKUP fm k = SOME v)
[FLOOKUP_FUNION] Theorem
⊢ FLOOKUP (f1 ⊌ f2) k =
case FLOOKUP f1 k of NONE => FLOOKUP f2 k | SOME v => SOME v
[FLOOKUP_FUN_FMAP] Theorem
⊢ FINITE P ⇒
FLOOKUP (FUN_FMAP f P) k = if k ∈ P then SOME (f k) else NONE
[FLOOKUP_MAP_KEYS] Theorem
⊢ INJ f (FDOM m) 𝕌(:β) ⇒
FLOOKUP (MAP_KEYS f m) k =
OPTION_BIND (some x. k = f x ∧ x ∈ FDOM m) (FLOOKUP m)
[FLOOKUP_MAP_KEYS_MAPPED] Theorem
⊢ INJ f 𝕌(:α) 𝕌(:β) ⇒ FLOOKUP (MAP_KEYS f m) (f k) = FLOOKUP m k
[FLOOKUP_SUBMAP] Theorem
⊢ f ⊑ g ∧ FLOOKUP f k = SOME v ⇒ FLOOKUP g k = SOME v
[FLOOKUP_UPDATE] Theorem
⊢ FLOOKUP (fm |+ (k1,v)) k2 =
if k1 = k2 then SOME v else FLOOKUP fm k2
[FLOOKUP_o_f] Theorem
⊢ FLOOKUP (f o_f fm) k =
case FLOOKUP fm k of NONE => NONE | SOME v => SOME (f v)
[FMAP_MAP2_FEMPTY] Theorem
⊢ FMAP_MAP2 f FEMPTY = FEMPTY
[FMAP_MAP2_FUPDATE] Theorem
⊢ FMAP_MAP2 f (m |+ (x,v)) = FMAP_MAP2 f m |+ (x,f (x,v))
[FMAP_MAP2_THM] Theorem
⊢ FDOM (FMAP_MAP2 f m) = FDOM m ∧
∀x. x ∈ FDOM m ⇒ FMAP_MAP2 f m ' x = f (x,m ' x)
[FMEQ_ENUMERATE_CASES] Theorem
⊢ ∀f1 kvl p. f1 |+ p = FEMPTY |++ kvl ⇒ MEM p kvl
[FMEQ_SINGLE_SIMPLE_DISJ_ELIM] Theorem
⊢ ∀fm k v ck cv.
fm |+ (k,v) = FEMPTY |+ (ck,cv) ⇔
k = ck ∧ v = cv ∧ (fm = FEMPTY ∨ ∃v'. fm = FEMPTY |+ (k,v'))
[FMEQ_SINGLE_SIMPLE_ELIM] Theorem
⊢ ∀P k v ck cv nv.
(∃fm. fm |+ (k,v) = FEMPTY |+ (ck,cv) ∧ P (fm |+ (k,nv))) ⇔
k = ck ∧ v = cv ∧ P (FEMPTY |+ (ck,nv))
[FMERGE_ASSOC] Theorem
⊢ ASSOC (FMERGE m) ⇔ ASSOC m
[FMERGE_COMM] Theorem
⊢ COMM (FMERGE m) ⇔ COMM m
[FMERGE_DOMSUB] Theorem
⊢ ∀m m1 m2 k. FMERGE m m1 m2 \\ k = FMERGE m (m1 \\ k) (m2 \\ k)
[FMERGE_DRESTRICT] Theorem
⊢ DRESTRICT (FMERGE f st1 st2) vs =
FMERGE f (DRESTRICT st1 vs) (DRESTRICT st2 vs)
[FMERGE_EQ_FEMPTY] Theorem
⊢ FMERGE m f g = FEMPTY ⇔ f = FEMPTY ∧ g = FEMPTY
[FMERGE_FEMPTY] Theorem
⊢ FMERGE m f FEMPTY = f ∧ FMERGE m FEMPTY f = f
[FMERGE_FUNION] Theorem
⊢ FUNION = FMERGE (λx y. x)
[FMERGE_NO_CHANGE] Theorem
⊢ (FMERGE m f1 f2 = f1 ⇔
∀x. x ∈ FDOM f2 ⇒ x ∈ FDOM f1 ∧ m (f1 ' x) (f2 ' x) = f1 ' x) ∧
(FMERGE m f1 f2 = f2 ⇔
∀x. x ∈ FDOM f1 ⇒ x ∈ FDOM f2 ∧ m (f1 ' x) (f2 ' x) = f2 ' x)
[FM_PULL_APART] Theorem
⊢ ∀fm k. k ∈ FDOM fm ⇒ ∃fm0 v. fm = fm0 |+ (k,v) ∧ k ∉ FDOM fm0
[FOLDL2_FUPDATE_LIST] Theorem
⊢ ∀f1 f2 bs cs a.
LENGTH bs = LENGTH cs ⇒
FOLDL2 (λfm b c. fm |+ (f1 b c,f2 b c)) a bs cs =
a |++ ZIP (MAP2 f1 bs cs,MAP2 f2 bs cs)
[FOLDL2_FUPDATE_LIST_paired] Theorem
⊢ ∀f1 f2 bs cs a.
LENGTH bs = LENGTH cs ⇒
FOLDL2 (λfm b (c,d). fm |+ (f1 b c d,f2 b c d)) a bs cs =
a |++
ZIP
(MAP2 (λb. UNCURRY (f1 b)) bs cs,
MAP2 (λb. UNCURRY (f2 b)) bs cs)
[FOLDL_FUPDATE_LIST] Theorem
⊢ ∀f1 f2 ls a.
FOLDL (λfm k. fm |+ (f1 k,f2 k)) a ls =
a |++ MAP (λk. (f1 k,f2 k)) ls
[FRANGE_DOMSUB_SUBSET] Theorem
⊢ FRANGE (fm \\ k) ⊆ FRANGE fm
[FRANGE_DRESTRICT_SUBSET] Theorem
⊢ FRANGE (DRESTRICT fm s) ⊆ FRANGE fm
[FRANGE_FEMPTY] Theorem
⊢ FRANGE FEMPTY = ∅
[FRANGE_FLOOKUP] Theorem
⊢ v ∈ FRANGE f ⇔ ∃k. FLOOKUP f k = SOME v
[FRANGE_FMAP] Theorem
⊢ FINITE P ⇒ FRANGE (FUN_FMAP f P) = IMAGE f P
[FRANGE_FUNION] Theorem
⊢ DISJOINT (FDOM fm1) (FDOM fm2) ⇒
FRANGE (fm1 ⊌ fm2) = FRANGE fm1 ∪ FRANGE fm2
[FRANGE_FUNION_SUBSET] Theorem
⊢ FRANGE (f1 ⊌ f2) ⊆ FRANGE f1 ∪ FRANGE f2
[FRANGE_FUPDATE] Theorem
⊢ ∀f x y.
FRANGE (f |+ (x,y)) = y INSERT FRANGE (DRESTRICT f (COMPL {x}))
[FRANGE_FUPDATE_DOMSUB] Theorem
⊢ ∀fm k v. FRANGE (fm |+ (k,v)) = v INSERT FRANGE (fm \\ k)
[FRANGE_FUPDATE_LIST_SUBSET] Theorem
⊢ ∀ls fm. FRANGE (fm |++ ls) ⊆ FRANGE fm ∪ set (MAP SND ls)
[FRANGE_FUPDATE_SUBSET] Theorem
⊢ FRANGE (fm |+ kv) ⊆ FRANGE fm ∪ {SND kv}
[FUNION_ASSOC] Theorem
⊢ ∀f g h. f ⊌ (g ⊌ h) = f ⊌ g ⊌ h
[FUNION_COMM] Theorem
⊢ ∀f g. DISJOINT (FDOM f) (FDOM g) ⇒ f ⊌ g = g ⊌ f
[FUNION_EQ] Theorem
⊢ ∀f1 f2 f3.
DISJOINT (FDOM f1) (FDOM f2) ∧ DISJOINT (FDOM f1) (FDOM f3) ⇒
(f1 ⊌ f2 = f1 ⊌ f3 ⇔ f2 = f3)
[FUNION_EQ_FEMPTY] Theorem
⊢ ∀h1 h2. h1 ⊌ h2 = FEMPTY ⇔ h1 = FEMPTY ∧ h2 = FEMPTY
[FUNION_EQ_IMPL] Theorem
⊢ ∀f1 f2 f3.
DISJOINT (FDOM f1) (FDOM f2) ∧ DISJOINT (FDOM f1) (FDOM f3) ∧
f2 = f3 ⇒
f1 ⊌ f2 = f1 ⊌ f3
[FUNION_FEMPTY_1] Theorem
⊢ ∀g. FEMPTY ⊌ g = g
[FUNION_FEMPTY_2] Theorem
⊢ ∀f. f ⊌ FEMPTY = f
[FUNION_FMERGE] Theorem
⊢ ∀f1 f2 m. DISJOINT (FDOM f1) (FDOM f2) ⇒ FMERGE m f1 f2 = f1 ⊌ f2
[FUNION_FUPDATE_1] Theorem
⊢ ∀f g x y. f |+ (x,y) ⊌ g = (f ⊌ g) |+ (x,y)
[FUNION_FUPDATE_2] Theorem
⊢ ∀f g x y.
f ⊌ g |+ (x,y) = if x ∈ FDOM f then f ⊌ g else (f ⊌ g) |+ (x,y)
[FUNION_IDEMPOT] Theorem
⊢ fm ⊌ fm = fm
[FUN_FMAP_EMPTY] Theorem
⊢ FUN_FMAP f ∅ = FEMPTY
[FUPD11_SAME_BASE] Theorem
⊢ ∀f k1 v1 k2 v2.
f |+ (k1,v1) = f |+ (k2,v2) ⇔
k1 = k2 ∧ v1 = v2 ∨
k1 ≠ k2 ∧ k1 ∈ FDOM f ∧ k2 ∈ FDOM f ∧ f |+ (k1,v1) = f ∧
f |+ (k2,v2) = f
[FUPD11_SAME_KEY_AND_BASE] Theorem
⊢ ∀f k v1 v2. f |+ (k,v1) = f |+ (k,v2) ⇔ v1 = v2
[FUPD11_SAME_NEW_KEY] Theorem
⊢ ∀f1 f2 k v1 v2.
k ∉ FDOM f1 ∧ k ∉ FDOM f2 ⇒
(f1 |+ (k,v1) = f2 |+ (k,v2) ⇔ f1 = f2 ∧ v1 = v2)
[FUPD11_SAME_UPDATE] Theorem
⊢ ∀f1 f2 k v.
f1 |+ (k,v) = f2 |+ (k,v) ⇔
DRESTRICT f1 (COMPL {k}) = DRESTRICT f2 (COMPL {k})
[FUPDATE_COMMUTES] Theorem
⊢ ∀f a b c d. a ≠ c ⇒ f |+ (a,b) |+ (c,d) = f |+ (c,d) |+ (a,b)
[FUPDATE_DRESTRICT] Theorem
⊢ ∀f x y. f |+ (x,y) = DRESTRICT f (COMPL {x}) |+ (x,y)
[FUPDATE_ELIM] Theorem
⊢ ∀k v f. k ∈ FDOM f ∧ f ' k = v ⇒ f |+ (k,v) = f
[FUPDATE_EQ] Theorem
⊢ ∀f a b c. f |+ (a,b) |+ (a,c) = f |+ (a,c)
[FUPDATE_EQ_FUNION] Theorem
⊢ ∀fm kv. fm |+ kv = FEMPTY |+ kv ⊌ fm
[FUPDATE_EQ_FUPDATE_LIST] Theorem
⊢ ∀fm kv. fm |+ kv = fm |++ [kv]
[FUPDATE_FUPDATE_LIST_COMMUTES] Theorem
⊢ ¬MEM k (MAP FST kvl) ⇒ fm |+ (k,v) |++ kvl = (fm |++ kvl) |+ (k,v)
[FUPDATE_FUPDATE_LIST_MEM] Theorem
⊢ MEM k (MAP FST kvl) ⇒ fm |+ (k,v) |++ kvl = fm |++ kvl
[FUPDATE_LIST_ALL_DISTINCT_APPLY_MEM] Theorem
⊢ ∀P ls k v fm.
ALL_DISTINCT (MAP FST ls) ∧ MEM (k,v) ls ∧ P v ⇒
P ((fm |++ ls) ' k)
[FUPDATE_LIST_ALL_DISTINCT_PERM] Theorem
⊢ ∀ls ls' fm.
ALL_DISTINCT (MAP FST ls) ∧ PERM ls ls' ⇒ fm |++ ls = fm |++ ls'
[FUPDATE_LIST_ALL_DISTINCT_REVERSE] Theorem
⊢ ∀ls. ALL_DISTINCT (MAP FST ls) ⇒ ∀fm. fm |++ REVERSE ls = fm |++ ls
[FUPDATE_LIST_APPEND] Theorem
⊢ fm |++ (kvl1 ⧺ kvl2) = fm |++ kvl1 |++ kvl2
[FUPDATE_LIST_APPEND_COMMUTES] Theorem
⊢ ∀l1 l2 fm.
DISJOINT (set (MAP FST l1)) (set (MAP FST l2)) ⇒
fm |++ l1 |++ l2 = fm |++ l2 |++ l1
[FUPDATE_LIST_APPLY_HO_THM] Theorem
⊢ ∀P f kvl k.
(∃n. n < LENGTH kvl ∧ k = EL n (MAP FST kvl) ∧
P (EL n (MAP SND kvl)) ∧
∀m. n < m ∧ m < LENGTH kvl ⇒ EL m (MAP FST kvl) ≠ k) ∨
¬MEM k (MAP FST kvl) ∧ P (f ' k) ⇒
P ((f |++ kvl) ' k)
[FUPDATE_LIST_APPLY_MEM] Theorem
⊢ ∀kvl f k v n.
n < LENGTH kvl ∧ k = EL n (MAP FST kvl) ∧
v = EL n (MAP SND kvl) ∧
(∀m. n < m ∧ m < LENGTH kvl ⇒ EL m (MAP FST kvl) ≠ k) ⇒
(f |++ kvl) ' k = v
[FUPDATE_LIST_APPLY_NOT_MEM] Theorem
⊢ ∀kvl f k. ¬MEM k (MAP FST kvl) ⇒ (f |++ kvl) ' k = f ' k
[FUPDATE_LIST_APPLY_NOT_MEM_matchable] Theorem
⊢ ∀kvl f k v. ¬MEM k (MAP FST kvl) ∧ v = f ' k ⇒ (f |++ kvl) ' k = v
[FUPDATE_LIST_CANCEL] Theorem
⊢ ∀ls1 fm ls2.
(∀k. MEM k (MAP FST ls1) ⇒ MEM k (MAP FST ls2)) ⇒
fm |++ ls1 |++ ls2 = fm |++ ls2
[FUPDATE_LIST_EQ_FEMPTY] Theorem
⊢ ∀fm ls. fm |++ ls = FEMPTY ⇔ fm = FEMPTY ∧ ls = []
[FUPDATE_LIST_SAME_KEYS_UNWIND] Theorem
⊢ ∀f1 f2 kvl1 kvl2.
f1 |++ kvl1 = f2 |++ kvl2 ∧ MAP FST kvl1 = MAP FST kvl2 ∧
ALL_DISTINCT (MAP FST kvl1) ⇒
kvl1 = kvl2 ∧
∀kvl. MAP FST kvl = MAP FST kvl1 ⇒ f1 |++ kvl = f2 |++ kvl
[FUPDATE_LIST_SAME_UPDATE] Theorem
⊢ ∀kvl f1 f2.
f1 |++ kvl = f2 |++ kvl ⇔
DRESTRICT f1 (COMPL (set (MAP FST kvl))) =
DRESTRICT f2 (COMPL (set (MAP FST kvl)))
[FUPDATE_LIST_SNOC] Theorem
⊢ ∀xs x fm. fm |++ SNOC x xs = (fm |++ xs) |+ x
[FUPDATE_LIST_THM] Theorem
⊢ ∀f. f |++ [] = f ∧ ∀h t. f |++ (h::t) = f |+ h |++ t
[FUPDATE_PURGE] Theorem
⊢ ∀f x y. f |+ (x,y) = f \\ x |+ (x,y)
[FUPDATE_PURGE'] Theorem
⊢ ∀f x y. f \\ x |+ (x,y) = f |+ (x,y)
[FUPDATE_SAME_APPLY] Theorem
⊢ x = FST kv ∨ fm1 ' x = fm2 ' x ⇒ (fm1 |+ kv) ' x = (fm2 |+ kv) ' x
[FUPDATE_SAME_LIST_APPLY] Theorem
⊢ ∀kvl fm1 fm2 x.
MEM x (MAP FST kvl) ⇒ (fm1 |++ kvl) ' x = (fm2 |++ kvl) ' x
[FUPD_SAME_KEY_UNWIND] Theorem
⊢ ∀f1 f2 k v1 v2.
f1 |+ (k,v1) = f2 |+ (k,v2) ⇒
v1 = v2 ∧ ∀v. f1 |+ (k,v) = f2 |+ (k,v)
[IMAGE_FRANGE] Theorem
⊢ ∀f fm. IMAGE f (FRANGE fm) = FRANGE (f o_f fm)
[IN_FDOM_FOLDR_UNION] Theorem
⊢ ∀x hL.
x ∈ FDOM (FOLDR FUNION FEMPTY hL) ⇔ ∃h. MEM h hL ∧ x ∈ FDOM h
[IN_FRANGE] Theorem
⊢ ∀f v. v ∈ FRANGE f ⇔ ∃k. k ∈ FDOM f ∧ f ' k = v
[IN_FRANGE_DOMSUB_suff] Theorem
⊢ (∀v. v ∈ FRANGE fm ⇒ P v) ⇒ ∀v. v ∈ FRANGE (fm \\ k) ⇒ P v
[IN_FRANGE_DRESTRICT_suff] Theorem
⊢ (∀v. v ∈ FRANGE fm ⇒ P v) ⇒ ∀v. v ∈ FRANGE (DRESTRICT fm s) ⇒ P v
[IN_FRANGE_FLOOKUP] Theorem
⊢ ∀f v. v ∈ FRANGE f ⇔ ∃k. FLOOKUP f k = SOME v
[IN_FRANGE_FUNION_suff] Theorem
⊢ (∀v. v ∈ FRANGE f1 ⇒ P v) ∧ (∀v. v ∈ FRANGE f2 ⇒ P v) ⇒
∀v. v ∈ FRANGE (f1 ⊌ f2) ⇒ P v
[IN_FRANGE_FUPDATE_LIST_suff] Theorem
⊢ (∀v. v ∈ FRANGE fm ⇒ P v) ∧ (∀v. MEM v (MAP SND ls) ⇒ P v) ⇒
∀v. v ∈ FRANGE (fm |++ ls) ⇒ P v
[IN_FRANGE_FUPDATE_suff] Theorem
⊢ (∀v. v ∈ FRANGE fm ⇒ P v) ∧ P (SND kv) ⇒
∀v. v ∈ FRANGE (fm |+ kv) ⇒ P v
[IN_FRANGE_o_f_suff] Theorem
⊢ (∀v. v ∈ FRANGE fm ⇒ P (f v)) ⇒ ∀v. v ∈ FRANGE (f o_f fm) ⇒ P v
[ITFMAPR_FEMPTY] Theorem
⊢ ITFMAPR f FEMPTY A1 A2 ⇔ A1 = A2
[ITFMAPR_cases] Theorem
⊢ ∀f a0 a1 a2.
ITFMAPR f a0 a1 a2 ⇔
a0 = FEMPTY ∧ a2 = a1 ∨
∃A2 k v fm.
a0 = fm |+ (k,v) ∧ a2 = f k v A2 ∧ k ∉ FDOM fm ∧
ITFMAPR f fm a1 A2
[ITFMAPR_ind] Theorem
⊢ ∀f ITFMAPR'.
(∀A. ITFMAPR' FEMPTY A A) ∧
(∀A1 A2 k v fm.
k ∉ FDOM fm ∧ ITFMAPR' fm A1 A2 ⇒
ITFMAPR' (fm |+ (k,v)) A1 (f k v A2)) ⇒
∀a0 a1 a2. ITFMAPR f a0 a1 a2 ⇒ ITFMAPR' a0 a1 a2
[ITFMAPR_rules] Theorem
⊢ ∀f. (∀A. ITFMAPR f FEMPTY A A) ∧
∀A1 A2 k v fm.
k ∉ FDOM fm ∧ ITFMAPR f fm A1 A2 ⇒
ITFMAPR f (fm |+ (k,v)) A1 (f k v A2)
[ITFMAPR_strongind] Theorem
⊢ ∀f ITFMAPR'.
(∀A. ITFMAPR' FEMPTY A A) ∧
(∀A1 A2 k v fm.
k ∉ FDOM fm ∧ ITFMAPR f fm A1 A2 ∧ ITFMAPR' fm A1 A2 ⇒
ITFMAPR' (fm |+ (k,v)) A1 (f k v A2)) ⇒
∀a0 a1 a2. ITFMAPR f a0 a1 a2 ⇒ ITFMAPR' a0 a1 a2
[ITFMAPR_total] Theorem
⊢ ∀fm r0. ∃r. ITFMAPR f fm r0 r
[ITFMAPR_unique] Theorem
⊢ (∀k1 k2 v1 v2 A. f k1 v1 (f k2 v2 A) = f k2 v2 (f k1 v1 A)) ⇒
∀fm A0 A1 A2. ITFMAPR f fm A0 A1 ∧ ITFMAPR f fm A0 A2 ⇒ A1 = A2
[ITFMAP_FEMPTY] Theorem
⊢ ITFMAP f FEMPTY A = A
[ITFMAP_thm] Theorem
⊢ ITFMAP f FEMPTY A = A ∧
((∀k1 k2 v1 v2 A. f k1 v1 (f k2 v2 A) = f k2 v2 (f k1 v1 A)) ⇒
ITFMAP f (fm |+ (k,v)) A = f k v (ITFMAP f (fm \\ k) A))
[LEAST_NOTIN_FDOM] Theorem
⊢ (LEAST ptr. ptr ∉ FDOM refs) ∉ FDOM refs
[MAP_KEYS_BIJ_LINV] Theorem
⊢ f PERMUTES 𝕌(:num) ⇒ MAP_KEYS f (MAP_KEYS (LINV f 𝕌(:num)) t) = t
[MAP_KEYS_FEMPTY] Theorem
⊢ ∀f. MAP_KEYS f FEMPTY = FEMPTY
[MAP_KEYS_FUPDATE] Theorem
⊢ ∀f fm k v.
INJ f (k INSERT FDOM fm) 𝕌(:β) ⇒
MAP_KEYS f (fm |+ (k,v)) = MAP_KEYS f fm |+ (f k,v)
[MAP_KEYS_using_LINV] Theorem
⊢ ∀f fm.
INJ f (FDOM fm) 𝕌(:β) ⇒
MAP_KEYS f fm =
fm f_o_f FUN_FMAP (LINV f (FDOM fm)) (IMAGE f (FDOM fm))
[MAP_KEYS_witness] Theorem
⊢ let
m f fm =
if INJ f (FDOM fm) 𝕌(:β) then
fm f_o_f FUN_FMAP (LINV f (FDOM fm)) (IMAGE f (FDOM fm))
else FUN_FMAP ARB (IMAGE f (FDOM fm))
in
∀f fm.
FDOM (m f fm) = IMAGE f (FDOM fm) ∧
(INJ f (FDOM fm) 𝕌(:β) ⇒
∀x. x ∈ FDOM fm ⇒ m f fm ' (f x) = fm ' x)
[NOT_EQ_FAPPLY] Theorem
⊢ ∀f a x y. a ≠ x ⇒ (f |+ (x,y)) ' a = f ' a
[NOT_EQ_FEMPTY_FUPDATE] Theorem
⊢ ∀f a b. FEMPTY ≠ f |+ (a,b)
[NOT_FDOM_DRESTRICT] Theorem
⊢ ∀f x. x ∉ FDOM f ⇒ DRESTRICT f (COMPL {x}) = f
[NOT_FDOM_FAPPLY_FEMPTY] Theorem
⊢ ∀f x. x ∉ FDOM f ⇒ f ' x = FEMPTY ' x
[NUM_NOT_IN_FDOM] Theorem
⊢ ∃x. x ∉ FDOM f
[RRESTRICT_FEMPTY] Theorem
⊢ ∀r. RRESTRICT FEMPTY r = FEMPTY
[RRESTRICT_FUPDATE] Theorem
⊢ ∀f r x y.
RRESTRICT (f |+ (x,y)) r =
if y ∈ r then RRESTRICT f r |+ (x,y)
else RRESTRICT (DRESTRICT f (COMPL {x})) r
[SAME_KEY_UPDATES_DIFFER] Theorem
⊢ ∀f1 f2 k v1 v2. v1 ≠ v2 ⇒ f1 |+ (k,v1) ≠ f2 |+ (k,v2)
[STRONG_DRESTRICT_FUPDATE] Theorem
⊢ ∀f r x y.
x ∈ r ⇒
DRESTRICT (f |+ (x,y)) r = DRESTRICT f (r DELETE x) |+ (x,y)
[STRONG_DRESTRICT_FUPDATE_THM] Theorem
⊢ ∀f r x y.
DRESTRICT (f |+ (x,y)) r =
if x ∈ r then DRESTRICT f (COMPL {x} ∩ r) |+ (x,y)
else DRESTRICT f (COMPL {x} ∩ r)
[SUBMAP_ANTISYM] Theorem
⊢ ∀f g. f ⊑ g ∧ g ⊑ f ⇔ f = g
[SUBMAP_DOMSUB] Theorem
⊢ f \\ k ⊑ f
[SUBMAP_DOMSUB_gen] Theorem
⊢ ∀f g k. f \\ k ⊑ g ⇔ f \\ k ⊑ g \\ k
[SUBMAP_DRESTRICT] Theorem
⊢ DRESTRICT f P ⊑ f
[SUBMAP_DRESTRICT_MONOTONE] Theorem
⊢ f1 ⊑ f2 ∧ s1 ⊆ s2 ⇒ DRESTRICT f1 s1 ⊑ DRESTRICT f2 s2
[SUBMAP_FDOM_SUBSET] Theorem
⊢ f1 ⊑ f2 ⇒ FDOM f1 ⊆ FDOM f2
[SUBMAP_FEMPTY] Theorem
⊢ ∀f. FEMPTY ⊑ f
[SUBMAP_FLOOKUP_EQN] Theorem
⊢ f ⊑ g ⇔ ∀x y. FLOOKUP f x = SOME y ⇒ FLOOKUP g x = SOME y
[SUBMAP_FRANGE] Theorem
⊢ ∀f g. f ⊑ g ⇒ FRANGE f ⊆ FRANGE g
[SUBMAP_FUNION] Theorem
⊢ ∀f1 f2 f3.
f1 ⊑ f2 ∨ DISJOINT (FDOM f1) (FDOM f2) ∧ f1 ⊑ f3 ⇒ f1 ⊑ f2 ⊌ f3
[SUBMAP_FUNION_ABSORPTION] Theorem
⊢ ∀f g. f ⊑ g ⇔ f ⊌ g = g
[SUBMAP_FUNION_EQ] Theorem
⊢ (∀f1 f2 f3. DISJOINT (FDOM f1) (FDOM f2) ⇒ (f1 ⊑ f2 ⊌ f3 ⇔ f1 ⊑ f3)) ∧
∀f1 f2 f3.
DISJOINT (FDOM f1) (FDOM f3 DIFF FDOM f2) ⇒
(f1 ⊑ f2 ⊌ f3 ⇔ f1 ⊑ f2)
[SUBMAP_FUNION_ID] Theorem
⊢ (∀f1 f2. f1 ⊑ f1 ⊌ f2) ∧
∀f1 f2. DISJOINT (FDOM f1) (FDOM f2) ⇒ f2 ⊑ f1 ⊌ f2
[SUBMAP_FUPDATE] Theorem
⊢ ∀f g x y. f |+ (x,y) ⊑ g ⇔ x ∈ FDOM g ∧ g ' x = y ∧ f \\ x ⊑ g \\ x
[SUBMAP_FUPDATE_EQN] Theorem
⊢ f ⊑ f |+ (x,y) ⇔ x ∉ FDOM f ∨ f ' x = y ∧ x ∈ FDOM f
[SUBMAP_FUPDATE_FLOOKUP] Theorem
⊢ f ⊑ f |+ (x,y) ⇔ FLOOKUP f x = NONE ∨ FLOOKUP f x = SOME y
[SUBMAP_REFL] Theorem
⊢ ∀f. f ⊑ f
[SUBMAP_TRANS] Theorem
⊢ ∀f g h. f ⊑ g ∧ g ⊑ h ⇒ f ⊑ h
[SUBMAP_mono_FUPDATE] Theorem
⊢ ∀f g x y. f \\ x ⊑ g \\ x ⇒ f |+ (x,y) ⊑ g |+ (x,y)
[WF_lbound_inv_SUBSET] Theorem
⊢ FINITE s ⇒ WF (lbound s $PSUBSETᵀ)
[disjoint_drestrict] Theorem
⊢ ∀s m. DISJOINT s (FDOM m) ⇒ DRESTRICT m (COMPL s) = m
[drestrict_iter_list] Theorem
⊢ ∀m l. FOLDR (λk m. m \\ k) m l = DRESTRICT m (COMPL (set l))
[f_o_ASSOC] Theorem
⊢ (∀x y. g x = g y ⇔ x = y) ∧ (∀x y. h x = h y ⇔ x = y) ⇒
(f f_o g) f_o h = f f_o g ∘ h
[f_o_FEMPTY] Theorem
⊢ ∀g. FEMPTY f_o g = FEMPTY
[f_o_FUPDATE] Theorem
⊢ ∀fm k v g.
FINITE {x | g x ∈ FDOM fm} ∧ FINITE {x | g x = k} ⇒
(fm |+ (k,v)) f_o g =
FMERGE (flip K) (fm f_o g) (FUN_FMAP (K v) {x | g x = k})
[f_o_f_FEMPTY_1] Theorem
⊢ ∀f. FEMPTY f_o_f f = FEMPTY
[f_o_f_FEMPTY_2] Theorem
⊢ ∀f. f f_o_f FEMPTY = FEMPTY
[f_o_f_FUPDATE_compose] Theorem
⊢ ∀f1 f2 k x v.
x ∉ FDOM f1 ∧ x ∉ FRANGE f2 ⇒
(f1 |+ (x,v)) f_o_f (f2 |+ (k,x)) = f1 f_o_f f2 |+ (k,v)
[fdom_fupdate_list2] Theorem
⊢ ∀kvl fm.
FDOM (fm |++ kvl) =
FDOM fm DIFF set (MAP FST kvl) ∪ set (MAP FST kvl)
[fevery_funion] Theorem
⊢ ∀P m1 m2. FEVERY P m1 ∧ FEVERY P m2 ⇒ FEVERY P (m1 ⊌ m2)
[flookup_thm] Theorem
⊢ ∀f x v.
(FLOOKUP f x = NONE ⇔ x ∉ FDOM f) ∧
(FLOOKUP f x = SOME v ⇔ x ∈ FDOM f ∧ f ' x = v)
[fmap_CASES] Theorem
⊢ ∀f. f = FEMPTY ∨ ∃g x y. f = g |+ (x,y)
[fmap_EQ] Theorem
⊢ ∀f g. FDOM f = FDOM g ∧ $' f = $' g ⇔ f = g
[fmap_EQ_THM] Theorem
⊢ ∀f g. FDOM f = FDOM g ∧ (∀x. x ∈ FDOM f ⇒ f ' x = g ' x) ⇔ f = g
[fmap_EQ_UPTO___EMPTY] Theorem
⊢ ∀f1 f2. fmap_EQ_UPTO f1 f2 ∅ ⇔ f1 = f2
[fmap_EQ_UPTO___EQ] Theorem
⊢ ∀vs f. fmap_EQ_UPTO f f vs
[fmap_EQ_UPTO___FUPDATE_BOTH] Theorem
⊢ ∀f1 f2 ks k v.
fmap_EQ_UPTO f1 f2 ks ⇒
fmap_EQ_UPTO (f1 |+ (k,v)) (f2 |+ (k,v)) (ks DELETE k)
[fmap_EQ_UPTO___FUPDATE_BOTH___NO_DELETE] Theorem
⊢ ∀f1 f2 ks k v.
fmap_EQ_UPTO f1 f2 ks ⇒
fmap_EQ_UPTO (f1 |+ (k,v)) (f2 |+ (k,v)) ks
[fmap_EQ_UPTO___FUPDATE_SING] Theorem
⊢ ∀f1 f2 ks k v.
fmap_EQ_UPTO f1 f2 ks ⇒
fmap_EQ_UPTO (f1 |+ (k,v)) f2 (k INSERT ks)
[fmap_EXT] Theorem
⊢ ∀f g. f = g ⇔ FDOM f = FDOM g ∧ ∀x. x ∈ FDOM f ⇒ f ' x = g ' x
[fmap_INDUCT] Theorem
⊢ ∀P. P FEMPTY ∧ (∀f. P f ⇒ ∀x y. x ∉ FDOM f ⇒ P (f |+ (x,y))) ⇒
∀f. P f
[fmap_SIMPLE_INDUCT] Theorem
⊢ ∀P. P FEMPTY ∧ (∀f. P f ⇒ ∀x y. P (f |+ (x,y))) ⇒ ∀f. P f
[fmap_cases_NOTIN] Theorem
⊢ ∀fm. fm = FEMPTY ∨ ∃k v fm0. k ∉ FDOM fm0 ∧ fm = fm0 |+ (k,v)
[fmap_eq_flookup] Theorem
⊢ f1 = f2 ⇔ ∀x. FLOOKUP f1 x = FLOOKUP f2 x
[fmap_rel_FEMPTY] Theorem
⊢ fmap_rel R FEMPTY FEMPTY
[fmap_rel_FEMPTY2] Theorem
⊢ (fmap_rel R FEMPTY f ⇔ f = FEMPTY) ∧
(fmap_rel R f FEMPTY ⇔ f = FEMPTY)
[fmap_rel_FLOOKUP_imp] Theorem
⊢ fmap_rel R f1 f2 ⇒
(∀k. FLOOKUP f1 k = NONE ⇒ FLOOKUP f2 k = NONE) ∧
∀k v1.
FLOOKUP f1 k = SOME v1 ⇒ ∃v2. FLOOKUP f2 k = SOME v2 ∧ R v1 v2
[fmap_rel_FUNION_rels] Theorem
⊢ fmap_rel R f1 f2 ∧ fmap_rel R f3 f4 ⇒
fmap_rel R (f1 ⊌ f3) (f2 ⊌ f4)
[fmap_rel_FUPDATE_I] Theorem
⊢ fmap_rel R (f1 \\ k) (f2 \\ k) ∧ R v1 v2 ⇒
fmap_rel R (f1 |+ (k,v1)) (f2 |+ (k,v2))
[fmap_rel_FUPDATE_LIST_same] Theorem
⊢ ∀R ls1 ls2 f1 f2.
fmap_rel R f1 f2 ∧ MAP FST ls1 = MAP FST ls2 ∧
LIST_REL R (MAP SND ls1) (MAP SND ls2) ⇒
fmap_rel R (f1 |++ ls1) (f2 |++ ls2)
[fmap_rel_FUPDATE_same] Theorem
⊢ fmap_rel R f1 f2 ∧ R v1 v2 ⇒
fmap_rel R (f1 |+ (k,v1)) (f2 |+ (k,v2))
[fmap_rel_OPTREL_FLOOKUP] Theorem
⊢ fmap_rel R f1 f2 ⇔ ∀k. OPTREL R (FLOOKUP f1 k) (FLOOKUP f2 k)
[fmap_rel_mono] Theorem
⊢ (∀x y. R1 x y ⇒ R2 x y) ⇒ fmap_rel R1 f1 f2 ⇒ fmap_rel R2 f1 f2
[fmap_rel_refl] Theorem
⊢ (∀x. R x x) ⇒ fmap_rel R x x
[fmap_rel_sym] Theorem
⊢ (∀x y. R x y ⇒ R y x) ⇒ ∀x y. fmap_rel R x y ⇒ fmap_rel R y x
[fmap_rel_trans] Theorem
⊢ (∀x y z. R x y ∧ R y z ⇒ R x z) ⇒
∀x y z. fmap_rel R x y ∧ fmap_rel R y z ⇒ fmap_rel R x z
[fmap_to_list] Theorem
⊢ ∀m. ∃l. ALL_DISTINCT (MAP FST l) ∧ m = FEMPTY |++ l
[fmlfpR_cases] Theorem
⊢ ∀f fm0 a0 a1 a2 a3.
fmlfpR f fm0 a0 a1 a2 a3 ⇔
a1 = FEMPTY ∧ a3 = a0 ∧ a0 = a2 ∨
a1 = FEMPTY ∧ fmlfpR f fm0 a2 fm0 a2 a3 ∧ a0 ≠ a2 ∨
∃fm k v.
a1 = fm |+ (k,v) ∧ fmlfpR f fm0 a0 (fm \\ k) (f k v a2) a3
[fmlfpR_ind] Theorem
⊢ ∀f fm0 fmlfpR'.
(∀A0 A1. A0 = A1 ⇒ fmlfpR' A0 FEMPTY A1 A0) ∧
(∀A0 A1 A2.
fmlfpR' A1 fm0 A1 A2 ∧ A0 ≠ A1 ⇒ fmlfpR' A0 FEMPTY A1 A2) ∧
(∀A0 A1 A2 fm k v.
fmlfpR' A0 (fm \\ k) (f k v A1) A2 ⇒
fmlfpR' A0 (fm |+ (k,v)) A1 A2) ⇒
∀a0 a1 a2 a3. fmlfpR f fm0 a0 a1 a2 a3 ⇒ fmlfpR' a0 a1 a2 a3
[fmlfpR_lastpass] Theorem
⊢ (∀k v. FLOOKUP fm k = SOME v ⇒ f k v A = A) ⇒
(fmlfpR f fm A fm A B ⇔ A = B)
[fmlfpR_rules] Theorem
⊢ ∀f fm0.
(∀A0 A1. A0 = A1 ⇒ fmlfpR f fm0 A0 FEMPTY A1 A0) ∧
(∀A0 A1 A2.
fmlfpR f fm0 A1 fm0 A1 A2 ∧ A0 ≠ A1 ⇒
fmlfpR f fm0 A0 FEMPTY A1 A2) ∧
∀A0 A1 A2 fm k v.
fmlfpR f fm0 A0 (fm \\ k) (f k v A1) A2 ⇒
fmlfpR f fm0 A0 (fm |+ (k,v)) A1 A2
[fmlfpR_strongind] Theorem
⊢ ∀f fm0 fmlfpR'.
(∀A0 A1. A0 = A1 ⇒ fmlfpR' A0 FEMPTY A1 A0) ∧
(∀A0 A1 A2.
fmlfpR f fm0 A1 fm0 A1 A2 ∧ fmlfpR' A1 fm0 A1 A2 ∧ A0 ≠ A1 ⇒
fmlfpR' A0 FEMPTY A1 A2) ∧
(∀A0 A1 A2 fm k v.
fmlfpR f fm0 A0 (fm \\ k) (f k v A1) A2 ∧
fmlfpR' A0 (fm \\ k) (f k v A1) A2 ⇒
fmlfpR' A0 (fm |+ (k,v)) A1 A2) ⇒
∀a0 a1 a2 a3. fmlfpR f fm0 a0 a1 a2 a3 ⇒ fmlfpR' a0 a1 a2 a3
[fmlfpR_total] Theorem
⊢ ∀fm f R P A2 A0.
fp_soluble R P fm f ⇒
RC R A0 P ⇒
(fmlfpR f fm A0 fm A0 A2 ⇔ A2 = P)
[fmlfpR_total_lemma] Theorem
⊢ fp_soluble R P fm0 f ⇒
RC R A0 A1 ∧ RC R A1 P ∧ fm ⊑ fm0 ∧ A1 = FOLDR (UNCURRY f) A0 kvl ∧
DISJOINT (set (MAP FST kvl)) (FDOM fm) ∧
ALL_DISTINCT (MAP FST kvl) ∧ fm0 = FOLDR (flip $|+) fm kvl ⇒
(fmlfpR f fm0 A0 fm A1 A2 ⇔ A2 = P)
[fp_soluble_FOLDR1] Theorem
⊢ fp_soluble R P fm0 f ∧ fm0 = FOLDR (flip $|+) fm kvl ∧
DISJOINT (set (MAP FST kvl)) (FDOM fm) ∧ ALL_DISTINCT (MAP FST kvl) ⇒
(∀s A.
IS_SUFFIX kvl s ∧ RC R A P ⇒
RC R A (FOLDR (UNCURRY f) A s) ∧ RC R (FOLDR (UNCURRY f) A s) P) ∧
∀s A k v.
IS_SUFFIX kvl s ∧ RC R A P ∧ MEM (k,v) s ∧ f k v A ≠ A ⇒
FOLDR (UNCURRY f) A s ≠ A
[fupdate_list_foldl] Theorem
⊢ ∀m l. FOLDL (λenv (k,v). env |+ (k,v)) m l = m |++ l
[fupdate_list_foldr] Theorem
⊢ ∀m l. FOLDR (λ(k,v) env. env |+ (k,v)) m l = m |++ REVERSE l
[fupdate_list_map] Theorem
⊢ ∀l f x y.
x ∈ FDOM (FEMPTY |++ l) ⇒
(FEMPTY |++ MAP (λ(a,b). (a,f b)) l) ' x = f ((FEMPTY |++ l) ' x)
[is_fmap_cases] Theorem
⊢ ∀a0.
is_fmap a0 ⇔
a0 = (λa. INR ()) ∨
∃f a b. a0 = (λx. if x = a then INL b else f x) ∧ is_fmap f
[is_fmap_ind] Theorem
⊢ ∀is_fmap'.
is_fmap' (λa. INR ()) ∧
(∀f a b. is_fmap' f ⇒ is_fmap' (λx. if x = a then INL b else f x)) ⇒
∀a0. is_fmap a0 ⇒ is_fmap' a0
[is_fmap_rules] Theorem
⊢ is_fmap (λa. INR ()) ∧
∀f a b. is_fmap f ⇒ is_fmap (λx. if x = a then INL b else f x)
[is_fmap_strongind] Theorem
⊢ ∀is_fmap'.
is_fmap' (λa. INR ()) ∧
(∀f a b.
is_fmap f ∧ is_fmap' f ⇒
is_fmap' (λx. if x = a then INL b else f x)) ⇒
∀a0. is_fmap a0 ⇒ is_fmap' a0
[o_f_DOMSUB] Theorem
⊢ g o_f fm \\ k = g o_f (fm \\ k)
[o_f_FAPPLY] Theorem
⊢ ∀f g x. x ∈ FDOM g ⇒ (f o_f g) ' x = f (g ' x)
[o_f_FDOM] Theorem
⊢ ∀f g. FDOM g = FDOM (f o_f g)
[o_f_FEMPTY] Theorem
⊢ f o_f FEMPTY = FEMPTY
[o_f_FRANGE] Theorem
⊢ x ∈ FRANGE g ⇒ f x ∈ FRANGE (f o_f g)
[o_f_FUNION] Theorem
⊢ f o_f (f1 ⊌ f2) = f o_f f1 ⊌ f o_f f2
[o_f_FUPDATE] Theorem
⊢ f o_f (fm |+ (k,v)) = f o_f fm |+ (k,f v)
[o_f_cong] Theorem
⊢ ∀f fm f' fm'.
fm = fm' ∧ (∀v. v ∈ FRANGE fm ⇒ f v = f' v) ⇒
f o_f fm = f' o_f fm'
[o_f_id] Theorem
⊢ ∀m. (λx. x) o_f m = m
[o_f_o_f] Theorem
⊢ f o_f g o_f h = (f ∘ g) o_f h
*)
end
HOL 4, Kananaskis-14