Structure fcpTheory
signature fcpTheory =
sig
type thm = Thm.thm
(* Definitions *)
val FCP : thm
val FCP_CONCAT_def : thm
val FCP_CONS_def : thm
val FCP_EVERY_def : thm
val FCP_EXISTS_def : thm
val FCP_FOLD_def : thm
val FCP_FST_def : thm
val FCP_HD_def : thm
val FCP_MAP_def : thm
val FCP_SND_def : thm
val FCP_TL_def : thm
val FCP_UPDATE_def : thm
val FCP_ZIP_def : thm
val L2V_def : thm
val V2L_def : thm
val bit0_TY_DEF : thm
val bit0_case_def : thm
val bit0_size_def : thm
val bit1_TY_DEF : thm
val bit1_case_def : thm
val bit1_size_def : thm
val cart_TY_DEF : thm
val cart_tybij : thm
val dimindex_def : thm
val fcp_case_def : thm
val fcp_index : thm
val finite_image_TY_DEF : thm
val finite_image_tybij : thm
val finite_index_def : thm
(* Theorems *)
val APPLY_FCP_UPDATE_ID : thm
val CART_EQ : thm
val DIMINDEX_GE_1 : thm
val EL_V2L : thm
val FCP_APPLY_UPDATE_THM : thm
val FCP_BETA : thm
val FCP_CONCAT_11 : thm
val FCP_CONCAT_THM : thm
val FCP_CONS : thm
val FCP_ETA : thm
val FCP_EVERY : thm
val FCP_EXISTS : thm
val FCP_HD : thm
val FCP_MAP : thm
val FCP_TL : thm
val FCP_UNIQUE : thm
val FCP_UPDATE_COMMUTES : thm
val FCP_UPDATE_EQ : thm
val FCP_UPDATE_IMP_ID : thm
val LENGTH_V2L : thm
val NOT_FINITE_IMP_dimindex_1 : thm
val NULL_V2L : thm
val READ_L2V : thm
val READ_TL : thm
val V2L_L2V : thm
val bit0_11 : thm
val bit0_Axiom : thm
val bit0_case_cong : thm
val bit0_case_eq : thm
val bit0_distinct : thm
val bit0_induction : thm
val bit0_nchotomy : thm
val bit1_11 : thm
val bit1_Axiom : thm
val bit1_case_cong : thm
val bit1_case_eq : thm
val bit1_distinct : thm
val bit1_induction : thm
val bit1_nchotomy : thm
val card_dimindex : thm
val datatype_bit0 : thm
val datatype_bit1 : thm
val fcp_Axiom : thm
val fcp_ind : thm
val fcp_subst_comp : thm
val finite_bit0 : thm
val finite_bit1 : thm
val finite_one : thm
val finite_sum : thm
val index_bit0 : thm
val index_bit1 : thm
val index_comp : thm
val index_one : thm
val index_sum : thm
val fcp_grammars : type_grammar.grammar * term_grammar.grammar
(*
[indexedLists] Parent theory of "fcp"
[patternMatches] Parent theory of "fcp"
[FCP] Definition
⊢ $FCP = (λg. @f. ∀i. i < dimindex (:β) ⇒ f ' i = g i)
[FCP_CONCAT_def] Definition
⊢ ∀a b.
FCP_CONCAT a b =
FCP i.
if i < dimindex (:γ) then b ' i else a ' (i − dimindex (:γ))
[FCP_CONS_def] Definition
⊢ ∀h v. FCP_CONS h v = (0 :+ h) (FCP i. v ' (PRE i))
[FCP_EVERY_def] Definition
⊢ ∀P v. FCP_EVERY P v ⇔ ∀i. dimindex (:α) ≤ i ∨ P (v ' i)
[FCP_EXISTS_def] Definition
⊢ ∀P v. FCP_EXISTS P v ⇔ ∃i. i < dimindex (:α) ∧ P (v ' i)
[FCP_FOLD_def] Definition
⊢ ∀f i v. FCP_FOLD f i v = FOLDL f i (V2L v)
[FCP_FST_def] Definition
⊢ ∀a. FCP_FST a = FCP i. a ' (i + dimindex (:γ))
[FCP_HD_def] Definition
⊢ ∀v. FCP_HD v = v ' 0
[FCP_MAP_def] Definition
⊢ ∀f v. FCP_MAP f v = FCP i. f (v ' i)
[FCP_SND_def] Definition
⊢ ∀b. FCP_SND b = FCP i. b ' i
[FCP_TL_def] Definition
⊢ ∀v. FCP_TL v = FCP i. v ' (SUC i)
[FCP_UPDATE_def] Definition
⊢ ∀a b. (a :+ b) = (λm. FCP c. if a = c then b else m ' c)
[FCP_ZIP_def] Definition
⊢ ∀a b. FCP_ZIP a b = FCP i. (a ' i,b ' i)
[L2V_def] Definition
⊢ ∀L. L2V L = FCP i. EL i L
[V2L_def] Definition
⊢ ∀v. V2L v = GENLIST ($' v) (dimindex (:β))
[bit0_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0.
∀ $var$('bit0').
(∀a0.
(∃a. a0 =
(λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM))
a) ∨
(∃a. a0 =
(λa.
ind_type$CONSTR (SUC 0) a
(λn. ind_type$BOTTOM)) a) ⇒
$var$('bit0') a0) ⇒
$var$('bit0') a0) rep
[bit0_case_def] Definition
⊢ (∀a f f1. bit0_CASE (BIT0A a) f f1 = f a) ∧
∀a f f1. bit0_CASE (BIT0B a) f f1 = f1 a
[bit0_size_def] Definition
⊢ (∀f a. bit0_size f (BIT0A a) = 1 + f a) ∧
∀f a. bit0_size f (BIT0B a) = 1 + f a
[bit1_TY_DEF] Definition
⊢ ∃rep.
TYPE_DEFINITION
(λa0.
∀ $var$('bit1').
(∀a0.
(∃a. a0 =
(λa. ind_type$CONSTR 0 a (λn. ind_type$BOTTOM))
a) ∨
(∃a. a0 =
(λa.
ind_type$CONSTR (SUC 0) a
(λn. ind_type$BOTTOM)) a) ∨
a0 =
ind_type$CONSTR (SUC (SUC 0)) ARB
(λn. ind_type$BOTTOM) ⇒
$var$('bit1') a0) ⇒
$var$('bit1') a0) rep
[bit1_case_def] Definition
⊢ (∀a f f1 v. bit1_CASE (BIT1A a) f f1 v = f a) ∧
(∀a f f1 v. bit1_CASE (BIT1B a) f f1 v = f1 a) ∧
∀f f1 v. bit1_CASE BIT1C f f1 v = v
[bit1_size_def] Definition
⊢ (∀f a. bit1_size f (BIT1A a) = 1 + f a) ∧
(∀f a. bit1_size f (BIT1B a) = 1 + f a) ∧ ∀f. bit1_size f BIT1C = 0
[cart_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION (λf. T) rep
[cart_tybij] Definition
⊢ (∀a. mk_cart (dest_cart a) = a) ∧
∀r. (λf. T) r ⇔ dest_cart (mk_cart r) = r
[dimindex_def] Definition
⊢ dimindex (:α) = if FINITE 𝕌(:α) then CARD 𝕌(:α) else 1
[fcp_case_def] Definition
⊢ ∀h f. fcp_CASE (mk_cart h) f = f h
[fcp_index] Definition
⊢ ∀x i. x ' i = dest_cart x (finite_index i)
[finite_image_TY_DEF] Definition
⊢ ∃rep. TYPE_DEFINITION (λx. x = ARB ∨ FINITE 𝕌(:α)) rep
[finite_image_tybij] Definition
⊢ (∀a. mk_finite_image (dest_finite_image a) = a) ∧
∀r. (λx. x = ARB ∨ FINITE 𝕌(:α)) r ⇔
dest_finite_image (mk_finite_image r) = r
[finite_index_def] Definition
⊢ finite_index = @f. ∀x. ∃!n. n < dimindex (:α) ∧ f n = x
[APPLY_FCP_UPDATE_ID] Theorem
⊢ ∀m a. (a :+ m ' a) m = m
[CART_EQ] Theorem
⊢ ∀x y. x = y ⇔ ∀i. i < dimindex (:β) ⇒ x ' i = y ' i
[DIMINDEX_GE_1] Theorem
⊢ 1 ≤ dimindex (:α)
[EL_V2L] Theorem
⊢ ∀i v. i < dimindex (:β) ⇒ EL i (V2L v) = v ' i
[FCP_APPLY_UPDATE_THM] Theorem
⊢ ∀m a w b.
(a :+ w) m ' b =
if b < dimindex (:β) then if a = b then w else m ' b
else FAIL $' $var$(index out of range) ((a :+ w) m) b
[FCP_BETA] Theorem
⊢ ∀i. i < dimindex (:β) ⇒ $FCP g ' i = g i
[FCP_CONCAT_11] Theorem
⊢ ∀a b c d.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ∧ FCP_CONCAT a b = FCP_CONCAT c d ⇒
a = c ∧ b = d
[FCP_CONCAT_THM] Theorem
⊢ ∀a b.
FINITE 𝕌(:β) ∧ FINITE 𝕌(:γ) ⇒
FCP_FST (FCP_CONCAT a b) = a ∧ FCP_SND (FCP_CONCAT a b) = b
[FCP_CONS] Theorem
⊢ ∀a v. FCP_CONS a v = L2V (a::V2L v)
[FCP_ETA] Theorem
⊢ ∀g. (FCP i. g ' i) = g
[FCP_EVERY] Theorem
⊢ ∀P v. FCP_EVERY P v ⇔ EVERY P (V2L v)
[FCP_EXISTS] Theorem
⊢ ∀P v. FCP_EXISTS P v ⇔ EXISTS P (V2L v)
[FCP_HD] Theorem
⊢ ∀v. FCP_HD v = HD (V2L v)
[FCP_MAP] Theorem
⊢ ∀f v. FCP_MAP f v = L2V (MAP f (V2L v))
[FCP_TL] Theorem
⊢ ∀v. 1 < dimindex (:β) ∧ dimindex (:γ) = dimindex (:β) − 1 ⇒
FCP_TL v = L2V (TL (V2L v))
[FCP_UNIQUE] Theorem
⊢ ∀f g. (∀i. i < dimindex (:β) ⇒ f ' i = g i) ⇔ $FCP g = f
[FCP_UPDATE_COMMUTES] Theorem
⊢ ∀m a b c d. a ≠ b ⇒ (a :+ c) ((b :+ d) m) = (b :+ d) ((a :+ c) m)
[FCP_UPDATE_EQ] Theorem
⊢ ∀m a b c. (a :+ c) ((a :+ b) m) = (a :+ c) m
[FCP_UPDATE_IMP_ID] Theorem
⊢ ∀m a v. m ' a = v ⇒ (a :+ v) m = m
[LENGTH_V2L] Theorem
⊢ ∀v. LENGTH (V2L v) = dimindex (:β)
[NOT_FINITE_IMP_dimindex_1] Theorem
⊢ INFINITE 𝕌(:α) ⇒ dimindex (:α) = 1
[NULL_V2L] Theorem
⊢ ∀v. ¬NULL (V2L v)
[READ_L2V] Theorem
⊢ ∀i a. i < dimindex (:β) ⇒ L2V a ' i = EL i a
[READ_TL] Theorem
⊢ ∀i a. i < dimindex (:β) ⇒ FCP_TL a ' i = a ' (SUC i)
[V2L_L2V] Theorem
⊢ ∀x. dimindex (:β) = LENGTH x ⇒ V2L (L2V x) = x
[bit0_11] Theorem
⊢ (∀a a'. BIT0A a = BIT0A a' ⇔ a = a') ∧
∀a a'. BIT0B a = BIT0B a' ⇔ a = a'
[bit0_Axiom] Theorem
⊢ ∀f0 f1. ∃fn. (∀a. fn (BIT0A a) = f0 a) ∧ ∀a. fn (BIT0B a) = f1 a
[bit0_case_cong] Theorem
⊢ ∀M M' f f1.
M = M' ∧ (∀a. M' = BIT0A a ⇒ f a = f' a) ∧
(∀a. M' = BIT0B a ⇒ f1 a = f1' a) ⇒
bit0_CASE M f f1 = bit0_CASE M' f' f1'
[bit0_case_eq] Theorem
⊢ bit0_CASE x f f1 = v ⇔
(∃a. x = BIT0A a ∧ f a = v) ∨ ∃a. x = BIT0B a ∧ f1 a = v
[bit0_distinct] Theorem
⊢ ∀a' a. BIT0A a ≠ BIT0B a'
[bit0_induction] Theorem
⊢ ∀P. (∀a. P (BIT0A a)) ∧ (∀a. P (BIT0B a)) ⇒ ∀b. P b
[bit0_nchotomy] Theorem
⊢ ∀bb. (∃a. bb = BIT0A a) ∨ ∃a. bb = BIT0B a
[bit1_11] Theorem
⊢ (∀a a'. BIT1A a = BIT1A a' ⇔ a = a') ∧
∀a a'. BIT1B a = BIT1B a' ⇔ a = a'
[bit1_Axiom] Theorem
⊢ ∀f0 f1 f2. ∃fn.
(∀a. fn (BIT1A a) = f0 a) ∧ (∀a. fn (BIT1B a) = f1 a) ∧
fn BIT1C = f2
[bit1_case_cong] Theorem
⊢ ∀M M' f f1 v.
M = M' ∧ (∀a. M' = BIT1A a ⇒ f a = f' a) ∧
(∀a. M' = BIT1B a ⇒ f1 a = f1' a) ∧ (M' = BIT1C ⇒ v = v') ⇒
bit1_CASE M f f1 v = bit1_CASE M' f' f1' v'
[bit1_case_eq] Theorem
⊢ bit1_CASE x f f1 v = v' ⇔
(∃a. x = BIT1A a ∧ f a = v') ∨ (∃a. x = BIT1B a ∧ f1 a = v') ∨
x = BIT1C ∧ v = v'
[bit1_distinct] Theorem
⊢ (∀a' a. BIT1A a ≠ BIT1B a') ∧ (∀a. BIT1A a ≠ BIT1C) ∧
∀a. BIT1B a ≠ BIT1C
[bit1_induction] Theorem
⊢ ∀P. (∀a. P (BIT1A a)) ∧ (∀a. P (BIT1B a)) ∧ P BIT1C ⇒ ∀b. P b
[bit1_nchotomy] Theorem
⊢ ∀bb. (∃a. bb = BIT1A a) ∨ (∃a. bb = BIT1B a) ∨ bb = BIT1C
[card_dimindex] Theorem
⊢ FINITE 𝕌(:α) ⇒ CARD 𝕌(:α) = dimindex (:α)
[datatype_bit0] Theorem
⊢ DATATYPE (bit0 BIT0A BIT0B)
[datatype_bit1] Theorem
⊢ DATATYPE (bit1 BIT1A BIT1B BIT1C)
[fcp_Axiom] Theorem
⊢ ∀f. ∃g. ∀h. g (mk_cart h) = f h
[fcp_ind] Theorem
⊢ ∀P. (∀f. P (mk_cart f)) ⇒ ∀a. P a
[fcp_subst_comp] Theorem
⊢ ∀a b f. (x :+ y) ($FCP f) = FCP c. if x = c then y else f c
[finite_bit0] Theorem
⊢ FINITE 𝕌(:α bit0) ⇔ FINITE 𝕌(:α)
[finite_bit1] Theorem
⊢ FINITE 𝕌(:α bit1) ⇔ FINITE 𝕌(:α)
[finite_one] Theorem
⊢ FINITE 𝕌(:unit)
[finite_sum] Theorem
⊢ FINITE 𝕌(:α + β) ⇔ FINITE 𝕌(:α) ∧ FINITE 𝕌(:β)
[index_bit0] Theorem
⊢ dimindex (:α bit0) = if FINITE 𝕌(:α) then 2 * dimindex (:α) else 1
[index_bit1] Theorem
⊢ dimindex (:α bit1) =
if FINITE 𝕌(:α) then 2 * dimindex (:α) + 1 else 1
[index_comp] Theorem
⊢ ∀f n.
$FCP f ' n =
if n < dimindex (:β) then f n
else FAIL $' $var$(FCP out of bounds) ($FCP f) n
[index_one] Theorem
⊢ dimindex (:unit) = 1
[index_sum] Theorem
⊢ dimindex (:α + β) =
if FINITE 𝕌(:α) ∧ FINITE 𝕌(:β) then dimindex (:α) + dimindex (:β)
else 1
*)
end
HOL 4, Kananaskis-14