Structure derivativeTheory
signature derivativeTheory =
sig
type thm = Thm.thm
(* Definitions *)
val convex : thm
val convex_on : thm
val differentiable : thm
val differentiable_on : thm
val frechet_derivative : thm
val has_derivative : thm
val has_vector_derivative : thm
val oabs : thm
val vector_derivative : thm
(* Theorems *)
val ABS_BOUND_GENERALIZE : thm
val CONNECTED_COMPACT_INTERVAL_1 : thm
val CONTINUOUS_AT_EXP : thm
val CONTINUOUS_ON_EXP : thm
val CONTINUOUS_WITHIN_EXP : thm
val CONVEX_ALT : thm
val CONVEX_BALL : thm
val CONVEX_CBALL : thm
val CONVEX_CONNECTED : thm
val CONVEX_DISTANCE : thm
val CONVEX_INDEXED : thm
val CONVEX_INTERVAL : thm
val CONVEX_SUM : thm
val DIFFERENTIABLE_BOUND : thm
val DIFFERENTIABLE_IMP_CONTINUOUS_AT : thm
val DIFFERENTIABLE_IMP_CONTINUOUS_ON : thm
val DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN : thm
val DIFFERENTIABLE_ON_EMPTY : thm
val DIFFERENTIABLE_ON_SUBSET : thm
val DIFFERENTIABLE_WITHIN_SUBSET : thm
val DIFFERENTIAL_COMPONENT_NEG_AT_MAXIMUM : thm
val DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM : thm
val DIFFERENTIAL_COMPONENT_ZERO_AT_MAXMIN : thm
val DIFFERENTIAL_ZERO_MAXMIN : thm
val DIFF_CHAIN_WITHIN : thm
val EXP_CONVERGES : thm
val EXP_CONVERGES_UNIFORMLY : thm
val EXP_CONVERGES_UNIFORMLY_CAUCHY : thm
val EXP_CONVERGES_UNIQUE : thm
val FRECHET_DERIVATIVE_WORKS : thm
val HAS_DERIVATIVE_ADD : thm
val HAS_DERIVATIVE_AT : thm
val HAS_DERIVATIVE_AT_ALT : thm
val HAS_DERIVATIVE_AT_WITHIN : thm
val HAS_DERIVATIVE_BILINEAR_AT : thm
val HAS_DERIVATIVE_BILINEAR_WITHIN : thm
val HAS_DERIVATIVE_CMUL : thm
val HAS_DERIVATIVE_CONST : thm
val HAS_DERIVATIVE_EXP : thm
val HAS_DERIVATIVE_ID : thm
val HAS_DERIVATIVE_IMP_CONTINUOUS_AT : thm
val HAS_DERIVATIVE_LINEAR : thm
val HAS_DERIVATIVE_MUL_AT : thm
val HAS_DERIVATIVE_MUL_WITHIN : thm
val HAS_DERIVATIVE_NEG : thm
val HAS_DERIVATIVE_POW : thm
val HAS_DERIVATIVE_SEQUENCE : thm
val HAS_DERIVATIVE_SEQUENCE_LIPSCHITZ : thm
val HAS_DERIVATIVE_SERIES : thm
val HAS_DERIVATIVE_SERIES' : thm
val HAS_DERIVATIVE_SUB : thm
val HAS_DERIVATIVE_SUM : thm
val HAS_DERIVATIVE_TRANSFORM_AT : thm
val HAS_DERIVATIVE_TRANSFORM_WITHIN : thm
val HAS_DERIVATIVE_WITHIN : thm
val HAS_DERIVATIVE_WITHIN_ALT : thm
val HAS_DERIVATIVE_WITHIN_OPEN : thm
val HAS_DERIVATIVE_WITHIN_SUBSET : thm
val HAS_VECTOR_DERIVATIVE_AT_WITHIN : thm
val HAS_VECTOR_DERIVATIVE_BILINEAR_AT : thm
val HAS_VECTOR_DERIVATIVE_BILINEAR_WITHIN : thm
val HAS_VECTOR_DERIVATIVE_WITHIN_SUBSET : thm
val IN_CONVEX_SET : thm
val IS_INTERVAL_CONNECTED : thm
val IS_INTERVAL_CONNECTED_1 : thm
val IS_INTERVAL_CONVEX : thm
val IS_INTERVAL_CONVEX_1 : thm
val LIMPT_APPROACHABLE : thm
val LIMPT_OF_CONVEX : thm
val LIM_MUL_ABS_WITHIN : thm
val LINEAR_FRECHET_DERIVATIVE : thm
val MVT : thm
val MVT_GENERAL : thm
val OABS : thm
val REAL_CONVEX_BOUND2_LT : thm
val REAL_CONVEX_BOUND_LT : thm
val REAL_MUL_NZ : thm
val ROLLE : thm
val TRIVIAL_LIMIT_WITHIN_CONVEX : thm
val has_derivative_at : thm
val has_derivative_within : thm
val derivative_grammars : type_grammar.grammar * term_grammar.grammar
(*
[real_topology] Parent theory of "derivative"
[convex] Definition
⊢ ∀s. convex s ⇔
∀x y u v.
x ∈ s ∧ y ∈ s ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1 ⇒ u * x + v * y ∈ s
[convex_on] Definition
⊢ ∀f s.
f convex_on s ⇔
∀x y u v.
x ∈ s ∧ y ∈ s ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1 ⇒
f (u * x + v * y) ≤ u * f x + v * f y
[differentiable] Definition
⊢ ∀f net. f differentiable net ⇔ ∃f'. (f has_derivative f') net
[differentiable_on] Definition
⊢ ∀f s.
f differentiable_on s ⇔
∀x. x ∈ s ⇒ f differentiable (at x within s)
[frechet_derivative] Definition
⊢ ∀f net. frechet_derivative f net = @f'. (f has_derivative f') net
[has_derivative] Definition
⊢ ∀f f' net.
(f has_derivative f') net ⇔
linear f' ∧
((λy.
(abs (y − netlimit net))⁻¹ *
(f y − (f (netlimit net) + f' (y − netlimit net)))) ⟶ 0)
net
[has_vector_derivative] Definition
⊢ ∀f f' net.
(f has_vector_derivative f') net ⇔
(f has_derivative (λx. x * f')) net
[oabs] Definition
⊢ ∀f. oabs f = sup {abs (f x) | abs x = 1}
[vector_derivative] Definition
⊢ ∀f net.
vector_derivative f net = @f'. (f has_vector_derivative f') net
[ABS_BOUND_GENERALIZE] Theorem
⊢ ∀f b.
linear f ⇒
((∀x. abs x = 1 ⇒ abs (f x) ≤ b) ⇔ ∀x. abs (f x) ≤ b * abs x)
[CONNECTED_COMPACT_INTERVAL_1] Theorem
⊢ ∀s. connected s ∧ compact s ⇔ ∃a b. s = interval [(a,b)]
[CONTINUOUS_AT_EXP] Theorem
⊢ ∀z. exp continuous at z
[CONTINUOUS_ON_EXP] Theorem
⊢ ∀s. exp continuous_on s
[CONTINUOUS_WITHIN_EXP] Theorem
⊢ ∀s z. exp continuous (at z within s)
[CONVEX_ALT] Theorem
⊢ ∀s. convex s ⇔
∀x y u. x ∈ s ∧ y ∈ s ∧ 0 ≤ u ∧ u ≤ 1 ⇒ (1 − u) * x + u * y ∈ s
[CONVEX_BALL] Theorem
⊢ ∀x e. convex (ball (x,e))
[CONVEX_CBALL] Theorem
⊢ ∀x e. convex (cball (x,e))
[CONVEX_CONNECTED] Theorem
⊢ ∀s. convex s ⇒ connected s
[CONVEX_DISTANCE] Theorem
⊢ ∀s a. (λx. dist (a,x)) convex_on s
[CONVEX_INDEXED] Theorem
⊢ ∀s. convex s ⇔
∀k u x.
(∀i. 1 ≤ i ∧ i ≤ k ⇒ 0 ≤ u i ∧ x i ∈ s) ∧ sum (1 .. k) u = 1 ⇒
sum (1 .. k) (λi. u i * x i) ∈ s
[CONVEX_INTERVAL] Theorem
⊢ ∀a b. convex (interval [(a,b)]) ∧ convex (interval (a,b))
[CONVEX_SUM] Theorem
⊢ ∀s k u x.
FINITE k ∧ convex s ∧ sum k u = 1 ∧
(∀i. i ∈ k ⇒ 0 ≤ u i ∧ x i ∈ s) ⇒
sum k (λi. u i * x i) ∈ s
[DIFFERENTIABLE_BOUND] Theorem
⊢ ∀f f' s B.
convex s ∧
(∀x. x ∈ s ⇒ (f has_derivative f' x) (at x within s)) ∧
(∀x. x ∈ s ⇒ oabs (f' x) ≤ B) ⇒
∀x y. x ∈ s ∧ y ∈ s ⇒ abs (f x − f y) ≤ B * abs (x − y)
[DIFFERENTIABLE_IMP_CONTINUOUS_AT] Theorem
⊢ ∀f x. f differentiable at x ⇒ f continuous at x
[DIFFERENTIABLE_IMP_CONTINUOUS_ON] Theorem
⊢ ∀f s. f differentiable_on s ⇒ f continuous_on s
[DIFFERENTIABLE_IMP_CONTINUOUS_WITHIN] Theorem
⊢ ∀f x s.
f differentiable (at x within s) ⇒ f continuous (at x within s)
[DIFFERENTIABLE_ON_EMPTY] Theorem
⊢ ∀f. f differentiable_on ∅
[DIFFERENTIABLE_ON_SUBSET] Theorem
⊢ ∀f s t. f differentiable_on t ∧ s ⊆ t ⇒ f differentiable_on s
[DIFFERENTIABLE_WITHIN_SUBSET] Theorem
⊢ ∀f s t x.
f differentiable (at x within t) ∧ s ⊆ t ⇒
f differentiable (at x within s)
[DIFFERENTIAL_COMPONENT_NEG_AT_MAXIMUM] Theorem
⊢ ∀f f' x s e.
x ∈ s ∧ convex s ∧ (f has_derivative f') (at x within s) ∧
0 < e ∧ (∀w. w ∈ s ∩ ball (x,e) ⇒ f w ≤ f x) ⇒
∀y. y ∈ s ⇒ f' (y − x) ≤ 0
[DIFFERENTIAL_COMPONENT_POS_AT_MINIMUM] Theorem
⊢ ∀f f' x s e.
x ∈ s ∧ convex s ∧ (f has_derivative f') (at x within s) ∧
0 < e ∧ (∀w. w ∈ s ∩ ball (x,e) ⇒ f x ≤ f w) ⇒
∀y. y ∈ s ⇒ 0 ≤ f' (y − x)
[DIFFERENTIAL_COMPONENT_ZERO_AT_MAXMIN] Theorem
⊢ ∀f f' x s.
x ∈ s ∧ open s ∧ (f has_derivative f') (at x) ∧
((∀w. w ∈ s ⇒ f w ≤ f x) ∨ ∀w. w ∈ s ⇒ f x ≤ f w) ⇒
∀h. f' h = 0
[DIFFERENTIAL_ZERO_MAXMIN] Theorem
⊢ ∀f f' x s.
x ∈ s ∧ open s ∧ (f has_derivative f') (at x) ∧
((∀y. y ∈ s ⇒ f y ≤ f x) ∨ ∀y. y ∈ s ⇒ f x ≤ f y) ⇒
f' = (λv. 0)
[DIFF_CHAIN_WITHIN] Theorem
⊢ ∀f g f' g' x s.
(f has_derivative f') (at x within s) ∧
(g has_derivative g') (at (f x) within IMAGE f s) ⇒
(g ∘ f has_derivative g' ∘ f') (at x within s)
[EXP_CONVERGES] Theorem
⊢ ∀z. ((λn. z pow n / &FACT n) sums exp z) (from 0)
[EXP_CONVERGES_UNIFORMLY] Theorem
⊢ ∀R e.
0 < R ∧ 0 < e ⇒
∃N. ∀n z.
n ≥ N ∧ abs z < R ⇒
abs (sum (0 .. n) (λi. z pow i / &FACT i) − exp z) ≤ e
[EXP_CONVERGES_UNIFORMLY_CAUCHY] Theorem
⊢ ∀R e.
0 < e ∧ 0 < R ⇒
∃N. ∀m n z.
m ≥ N ∧ abs z ≤ R ⇒
abs (sum (m .. n) (λi. z pow i / &FACT i)) < e
[EXP_CONVERGES_UNIQUE] Theorem
⊢ ∀w z. ((λn. z pow n / &FACT n) sums w) (from 0) ⇔ w = exp z
[FRECHET_DERIVATIVE_WORKS] Theorem
⊢ ∀f net.
f differentiable net ⇔
(f has_derivative frechet_derivative f net) net
[HAS_DERIVATIVE_ADD] Theorem
⊢ ∀f f' g g' net.
(f has_derivative f') net ∧ (g has_derivative g') net ⇒
((λx. f x + g x) has_derivative (λh. f' h + g' h)) net
[HAS_DERIVATIVE_AT] Theorem
⊢ ∀f f' x.
(f has_derivative f') (at x) ⇔
linear f' ∧
∀e. 0 < e ⇒
∃d. 0 < d ∧
∀x'.
0 < abs (x' − x) ∧ abs (x' − x) < d ⇒
abs (f x' − f x − f' (x' − x)) / abs (x' − x) < e
[HAS_DERIVATIVE_AT_ALT] Theorem
⊢ ∀f f' x.
(f has_derivative f') (at x) ⇔
linear f' ∧
∀e. 0 < e ⇒
∃d. 0 < d ∧
∀y. abs (y − x) < d ⇒
abs (f y − f x − f' (y − x)) ≤ e * abs (y − x)
[HAS_DERIVATIVE_AT_WITHIN] Theorem
⊢ ∀f f' x s.
(f has_derivative f') (at x) ⇒
(f has_derivative f') (at x within s)
[HAS_DERIVATIVE_BILINEAR_AT] Theorem
⊢ ∀h f g f' g' x.
(f has_derivative f') (at x) ∧ (g has_derivative g') (at x) ∧
bilinear h ⇒
((λx. h (f x) (g x)) has_derivative
(λd. h (f x) (g' d) + h (f' d) (g x))) (at x)
[HAS_DERIVATIVE_BILINEAR_WITHIN] Theorem
⊢ ∀h f g f' g' x s.
(f has_derivative f') (at x within s) ∧
(g has_derivative g') (at x within s) ∧ bilinear h ⇒
((λx. h (f x) (g x)) has_derivative
(λd. h (f x) (g' d) + h (f' d) (g x))) (at x within s)
[HAS_DERIVATIVE_CMUL] Theorem
⊢ ∀f f' net c.
(f has_derivative f') net ⇒
((λx. c * f x) has_derivative (λh. c * f' h)) net
[HAS_DERIVATIVE_CONST] Theorem
⊢ ∀c net. ((λx. c) has_derivative (λh. 0)) net
[HAS_DERIVATIVE_EXP] Theorem
⊢ ∀z. (exp has_derivative (λy. exp z * y)) (at z)
[HAS_DERIVATIVE_ID] Theorem
⊢ ∀net. ((λx. x) has_derivative (λh. h)) net
[HAS_DERIVATIVE_IMP_CONTINUOUS_AT] Theorem
⊢ ∀f f' x. (f has_derivative f') (at x) ⇒ f continuous at x
[HAS_DERIVATIVE_LINEAR] Theorem
⊢ ∀f net. linear f ⇒ (f has_derivative f) net
[HAS_DERIVATIVE_MUL_AT] Theorem
⊢ ∀f f' g g' a.
(f has_derivative f') (at a) ∧ (g has_derivative g') (at a) ⇒
((λx. f x * g x) has_derivative (λh. f a * g' h + f' h * g a))
(at a)
[HAS_DERIVATIVE_MUL_WITHIN] Theorem
⊢ ∀f f' g g' a s.
(f has_derivative f') (at a within s) ∧
(g has_derivative g') (at a within s) ⇒
((λx. f x * g x) has_derivative (λh. f a * g' h + f' h * g a))
(at a within s)
[HAS_DERIVATIVE_NEG] Theorem
⊢ ∀f f' net.
(f has_derivative f') net ⇒
((λx. -f x) has_derivative (λh. -f' h)) net
[HAS_DERIVATIVE_POW] Theorem
⊢ ∀q0 n.
((λq. q pow n) has_derivative
(λq. sum (1 .. n) (λi. q0 pow (n − i) * q * q0 pow (i − 1))))
(at q0)
[HAS_DERIVATIVE_SEQUENCE] Theorem
⊢ ∀s f f' g'.
convex s ∧
(∀n x. x ∈ s ⇒ (f n has_derivative f' n x) (at x within s)) ∧
(∀e. 0 < e ⇒
∃N. ∀n x h.
n ≥ N ∧ x ∈ s ⇒ abs (f' n x h − g' x h) ≤ e * abs h) ∧
(∃x l. x ∈ s ∧ ((λn. f n x) ⟶ l) sequentially) ⇒
∃g. ∀x.
x ∈ s ⇒
((λn. f n x) ⟶ g x) sequentially ∧
(g has_derivative g' x) (at x within s)
[HAS_DERIVATIVE_SEQUENCE_LIPSCHITZ] Theorem
⊢ ∀s f f' g'.
convex s ∧
(∀n x. x ∈ s ⇒ (f n has_derivative f' n x) (at x within s)) ∧
(∀e. 0 < e ⇒
∃N. ∀n x h.
n ≥ N ∧ x ∈ s ⇒ abs (f' n x h − g' x h) ≤ e * abs h) ⇒
∀e. 0 < e ⇒
∃N. ∀m n x y.
m ≥ N ∧ n ≥ N ∧ x ∈ s ∧ y ∈ s ⇒
abs (f m x − f n x − (f m y − f n y)) ≤ e * abs (x − y)
[HAS_DERIVATIVE_SERIES] Theorem
⊢ ∀s f f' g' k.
convex s ∧
(∀n x. x ∈ s ⇒ (f n has_derivative f' n x) (at x within s)) ∧
(∀e. 0 < e ⇒
∃N. ∀n x h.
n ≥ N ∧ x ∈ s ⇒
abs
(sum (k ∩ {x | 0 ≤ x ∧ x ≤ n}) (λi. f' i x h) − g' x h) ≤
e * abs h) ∧ (∃x l. x ∈ s ∧ ((λn. f n x) sums l) k) ⇒
∃g. ∀x.
x ∈ s ⇒
((λn. f n x) sums g x) k ∧
(g has_derivative g' x) (at x within s)
[HAS_DERIVATIVE_SERIES'] Theorem
⊢ ∀s f f' g' k.
convex s ∧
(∀n x.
x ∈ s ⇒ (f n has_derivative (λy. f' n x * y)) (at x within s)) ∧
(∀e. 0 < e ⇒
∃N. ∀n x.
n ≥ N ∧ x ∈ s ⇒
abs (sum (k ∩ (0 .. n)) (λi. f' i x) − g' x) ≤ e) ∧
(∃x l. x ∈ s ∧ ((λn. f n x) sums l) k) ⇒
∃g. ∀x.
x ∈ s ⇒
((λn. f n x) sums g x) k ∧
(g has_derivative (λy. g' x * y)) (at x within s)
[HAS_DERIVATIVE_SUB] Theorem
⊢ ∀f f' g g' net.
(f has_derivative f') net ∧ (g has_derivative g') net ⇒
((λx. f x − g x) has_derivative (λh. f' h − g' h)) net
[HAS_DERIVATIVE_SUM] Theorem
⊢ ∀f f' net s.
FINITE s ∧ (∀a. a ∈ s ⇒ (f a has_derivative f' a) net) ⇒
((λx. sum s (λa. f a x)) has_derivative (λh. sum s (λa. f' a h)))
net
[HAS_DERIVATIVE_TRANSFORM_AT] Theorem
⊢ ∀f f' g x d.
0 < d ∧ (∀x'. dist (x',x) < d ⇒ f x' = g x') ∧
(f has_derivative f') (at x) ⇒
(g has_derivative f') (at x)
[HAS_DERIVATIVE_TRANSFORM_WITHIN] Theorem
⊢ ∀f f' g x s d.
0 < d ∧ x ∈ s ∧ (∀x'. x' ∈ s ∧ dist (x',x) < d ⇒ f x' = g x') ∧
(f has_derivative f') (at x within s) ⇒
(g has_derivative f') (at x within s)
[HAS_DERIVATIVE_WITHIN] Theorem
⊢ ∀f f' x s.
(f has_derivative f') (at x within s) ⇔
linear f' ∧
∀e. 0 < e ⇒
∃d. 0 < d ∧
∀x'.
x' ∈ s ∧ 0 < abs (x' − x) ∧ abs (x' − x) < d ⇒
abs (f x' − f x − f' (x' − x)) / abs (x' − x) < e
[HAS_DERIVATIVE_WITHIN_ALT] Theorem
⊢ ∀f f' s x.
(f has_derivative f') (at x within s) ⇔
linear f' ∧
∀e. 0 < e ⇒
∃d. 0 < d ∧
∀y. y ∈ s ∧ abs (y − x) < d ⇒
abs (f y − f x − f' (y − x)) ≤ e * abs (y − x)
[HAS_DERIVATIVE_WITHIN_OPEN] Theorem
⊢ ∀f f' a s.
a ∈ s ∧ open s ⇒
((f has_derivative f') (at a within s) ⇔
(f has_derivative f') (at a))
[HAS_DERIVATIVE_WITHIN_SUBSET] Theorem
⊢ ∀f f' s t x.
(f has_derivative f') (at x within s) ∧ t ⊆ s ⇒
(f has_derivative f') (at x within t)
[HAS_VECTOR_DERIVATIVE_AT_WITHIN] Theorem
⊢ ∀f f' x s.
(f has_vector_derivative f') (at x) ⇒
(f has_vector_derivative f') (at x within s)
[HAS_VECTOR_DERIVATIVE_BILINEAR_AT] Theorem
⊢ ∀h f g f' g' x.
(f has_vector_derivative f') (at x) ∧
(g has_vector_derivative g') (at x) ∧ bilinear h ⇒
((λx. h (f x) (g x)) has_vector_derivative
h (f x) g' + h f' (g x)) (at x)
[HAS_VECTOR_DERIVATIVE_BILINEAR_WITHIN] Theorem
⊢ ∀h f g f' g' x s.
(f has_vector_derivative f') (at x within s) ∧
(g has_vector_derivative g') (at x within s) ∧ bilinear h ⇒
((λx. h (f x) (g x)) has_vector_derivative
h (f x) g' + h f' (g x)) (at x within s)
[HAS_VECTOR_DERIVATIVE_WITHIN_SUBSET] Theorem
⊢ ∀f f' s t x.
(f has_vector_derivative f') (at x within s) ∧ t ⊆ s ⇒
(f has_vector_derivative f') (at x within t)
[IN_CONVEX_SET] Theorem
⊢ ∀s a b u.
convex s ∧ a ∈ s ∧ b ∈ s ∧ 0 ≤ u ∧ u ≤ 1 ⇒
(1 − u) * a + u * b ∈ s
[IS_INTERVAL_CONNECTED] Theorem
⊢ ∀s. is_interval s ⇒ connected s
[IS_INTERVAL_CONNECTED_1] Theorem
⊢ ∀s. is_interval s ⇔ connected s
[IS_INTERVAL_CONVEX] Theorem
⊢ ∀s. is_interval s ⇒ convex s
[IS_INTERVAL_CONVEX_1] Theorem
⊢ ∀s. is_interval s ⇔ convex s
[LIMPT_APPROACHABLE] Theorem
⊢ ∀x s.
x limit_point_of s ⇔
∀e. 0 < e ⇒ ∃x'. x' ∈ s ∧ x' ≠ x ∧ dist (x',x) < e
[LIMPT_OF_CONVEX] Theorem
⊢ ∀s x. convex s ∧ x ∈ s ⇒ (x limit_point_of s ⇔ s ≠ {x})
[LIM_MUL_ABS_WITHIN] Theorem
⊢ ∀f a s.
(f ⟶ 0) (at a within s) ⇒
((λx. abs (x − a) * f x) ⟶ 0) (at a within s)
[LINEAR_FRECHET_DERIVATIVE] Theorem
⊢ ∀f net. f differentiable net ⇒ linear (frechet_derivative f net)
[MVT] Theorem
⊢ ∀f f' a b.
a < b ∧ f continuous_on interval [(a,b)] ∧
(∀x. x ∈ interval (a,b) ⇒ (f has_derivative f' x) (at x)) ⇒
∃x. x ∈ interval (a,b) ∧ f b − f a = f' x (b − a)
[MVT_GENERAL] Theorem
⊢ ∀f f' a b.
a < b ∧ f continuous_on interval [(a,b)] ∧
(∀x. x ∈ interval (a,b) ⇒ (f has_derivative f' x) (at x)) ⇒
∃x. x ∈ interval (a,b) ∧ abs (f b − f a) ≤ abs (f' x (b − a))
[OABS] Theorem
⊢ ∀f. linear f ⇒
(∀x. abs (f x) ≤ oabs f * abs x) ∧
∀b. (∀x. abs (f x) ≤ b * abs x) ⇒ oabs f ≤ b
[REAL_CONVEX_BOUND2_LT] Theorem
⊢ ∀x y a b u v.
x < a ∧ y < b ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1 ⇒
u * x + v * y < u * a + v * b
[REAL_CONVEX_BOUND_LT] Theorem
⊢ ∀x y a u v.
x < a ∧ y < a ∧ 0 ≤ u ∧ 0 ≤ v ∧ u + v = 1 ⇒ u * x + v * y < a
[REAL_MUL_NZ] Theorem
⊢ ∀a b. a ≠ 0 ∧ b ≠ 0 ⇒ a * b ≠ 0
[ROLLE] Theorem
⊢ ∀f f' a b.
a < b ∧ f a = f b ∧ f continuous_on interval [(a,b)] ∧
(∀x. x ∈ interval (a,b) ⇒ (f has_derivative f' x) (at x)) ⇒
∃x. x ∈ interval (a,b) ∧ f' x = (λv. 0)
[TRIVIAL_LIMIT_WITHIN_CONVEX] Theorem
⊢ ∀s x. convex s ∧ x ∈ s ⇒ (trivial_limit (at x within s) ⇔ s = {x})
[has_derivative_at] Theorem
⊢ ∀f f' x.
(f has_derivative f') (at x) ⇔
linear f' ∧
((λy. (abs (y − x))⁻¹ * (f y − (f x + f' (y − x)))) ⟶ 0) (at x)
[has_derivative_within] Theorem
⊢ ∀f f' x s.
(f has_derivative f') (at x within s) ⇔
linear f' ∧
((λy. (abs (y − x))⁻¹ * (f y − (f x + f' (y − x)))) ⟶ 0)
(at x within s)
*)
end
HOL 4, Kananaskis-14