Structure borelTheory
signature borelTheory =
sig
type thm = Thm.thm
(* Definitions *)
val AE_def : thm
val Borel : thm
val almost_everywhere_def : thm
val ext_lborel_def : thm
val fn_minus_def : thm
val fn_plus_def : thm
val indicator_fn_def : thm
val lambda0_def : thm
val lborel_def : thm
val lebesgue_def : thm
val nonneg_def : thm
val set_liminf_def : thm
val set_limsup_def : thm
(* Theorems *)
val AE_ALT : thm
val AE_I : thm
val AE_IMP_MEASURABLE_SETS : thm
val AE_NOT_IN : thm
val AE_THM : thm
val AE_all_S : thm
val AE_all_countable : thm
val AE_default : thm
val AE_filter : thm
val AE_iff_measurable : thm
val AE_iff_null : thm
val AE_iff_null_sets : thm
val AE_impl : thm
val AE_not_in : thm
val BOREL_MEASURABLE_INFINITY : thm
val BOREL_MEASURABLE_SETS : thm
val BOREL_MEASURABLE_SETS1 : thm
val BOREL_MEASURABLE_SETS10 : thm
val BOREL_MEASURABLE_SETS2 : thm
val BOREL_MEASURABLE_SETS3 : thm
val BOREL_MEASURABLE_SETS4 : thm
val BOREL_MEASURABLE_SETS5 : thm
val BOREL_MEASURABLE_SETS6 : thm
val BOREL_MEASURABLE_SETS7 : thm
val BOREL_MEASURABLE_SETS8 : thm
val BOREL_MEASURABLE_SETS9 : thm
val BOREL_MEASURABLE_SETS_CC : thm
val BOREL_MEASURABLE_SETS_CO : thm
val BOREL_MEASURABLE_SETS_CR : thm
val BOREL_MEASURABLE_SETS_FINITE : thm
val BOREL_MEASURABLE_SETS_NOT_SING : thm
val BOREL_MEASURABLE_SETS_OC : thm
val BOREL_MEASURABLE_SETS_OO : thm
val BOREL_MEASURABLE_SETS_OR : thm
val BOREL_MEASURABLE_SETS_RC : thm
val BOREL_MEASURABLE_SETS_RO : thm
val BOREL_MEASURABLE_SETS_SING : thm
val BOREL_MEASURABLE_SETS_SING' : thm
val Borel_def : thm
val Borel_eq_ge : thm
val Borel_eq_gr : thm
val Borel_eq_le : thm
val FN_ABS : thm
val FN_ABS' : thm
val FN_DECOMP : thm
val FN_DECOMP' : thm
val FN_MINUS_ABS_ZERO : thm
val FN_MINUS_ADD_LE : thm
val FN_MINUS_ALT : thm
val FN_MINUS_ALT' : thm
val FN_MINUS_CMUL : thm
val FN_MINUS_CMUL_full : thm
val FN_MINUS_FMUL : thm
val FN_MINUS_INFTY_IMP : thm
val FN_MINUS_LE_ABS : thm
val FN_MINUS_NOT_INFTY : thm
val FN_MINUS_NOT_INFTY' : thm
val FN_MINUS_POS : thm
val FN_MINUS_POS_ZERO : thm
val FN_MINUS_REDUCE : thm
val FN_MINUS_TO_PLUS : thm
val FN_MINUS_ZERO : thm
val FN_PLUS_ABS_SELF : thm
val FN_PLUS_ADD_LE : thm
val FN_PLUS_ALT : thm
val FN_PLUS_ALT' : thm
val FN_PLUS_CMUL : thm
val FN_PLUS_CMUL_full : thm
val FN_PLUS_FMUL : thm
val FN_PLUS_INFTY_IMP : thm
val FN_PLUS_LE_ABS : thm
val FN_PLUS_NEG_ZERO : thm
val FN_PLUS_NOT_INFTY : thm
val FN_PLUS_NOT_INFTY' : thm
val FN_PLUS_POS : thm
val FN_PLUS_POS_ID : thm
val FN_PLUS_REDUCE : thm
val FN_PLUS_TO_MINUS : thm
val FN_PLUS_ZERO : thm
val FORALL_IMP_AE : thm
val INDICATOR_FN_ABS : thm
val INDICATOR_FN_ABS_MUL : thm
val INDICATOR_FN_CROSS : thm
val INDICATOR_FN_DIFF : thm
val INDICATOR_FN_DIFF_SPACE : thm
val INDICATOR_FN_EMPTY : thm
val INDICATOR_FN_FCP_CROSS : thm
val INDICATOR_FN_INTER : thm
val INDICATOR_FN_INTER_MIN : thm
val INDICATOR_FN_LE_1 : thm
val INDICATOR_FN_MONO : thm
val INDICATOR_FN_MUL_INTER : thm
val INDICATOR_FN_NOT_INFTY : thm
val INDICATOR_FN_POS : thm
val INDICATOR_FN_SING_0 : thm
val INDICATOR_FN_SING_1 : thm
val INDICATOR_FN_UNION : thm
val INDICATOR_FN_UNION_MAX : thm
val INDICATOR_FN_UNION_MIN : thm
val IN_LIMINF : thm
val IN_LIMSUP : thm
val IN_MEASURABLE_BOREL : thm
val IN_MEASURABLE_BOREL_2D_FUNCTION : thm
val IN_MEASURABLE_BOREL_2D_VECTOR : thm
val IN_MEASURABLE_BOREL_ABS : thm
val IN_MEASURABLE_BOREL_ABS' : thm
val IN_MEASURABLE_BOREL_ADD : thm
val IN_MEASURABLE_BOREL_ADD' : thm
val IN_MEASURABLE_BOREL_AE_EQ : thm
val IN_MEASURABLE_BOREL_ALL : thm
val IN_MEASURABLE_BOREL_ALL_MEASURE : thm
val IN_MEASURABLE_BOREL_ALT1 : thm
val IN_MEASURABLE_BOREL_ALT1_IMP : thm
val IN_MEASURABLE_BOREL_ALT2 : thm
val IN_MEASURABLE_BOREL_ALT2_IMP : thm
val IN_MEASURABLE_BOREL_ALT3 : thm
val IN_MEASURABLE_BOREL_ALT3_IMP : thm
val IN_MEASURABLE_BOREL_ALT4 : thm
val IN_MEASURABLE_BOREL_ALT4_IMP : thm
val IN_MEASURABLE_BOREL_ALT5 : thm
val IN_MEASURABLE_BOREL_ALT5_IMP : thm
val IN_MEASURABLE_BOREL_ALT6 : thm
val IN_MEASURABLE_BOREL_ALT6_IMP : thm
val IN_MEASURABLE_BOREL_ALT7 : thm
val IN_MEASURABLE_BOREL_ALT7_IMP : thm
val IN_MEASURABLE_BOREL_ALT8 : thm
val IN_MEASURABLE_BOREL_ALT9 : thm
val IN_MEASURABLE_BOREL_BOREL_ABS : thm
val IN_MEASURABLE_BOREL_BOREL_I : thm
val IN_MEASURABLE_BOREL_CC : thm
val IN_MEASURABLE_BOREL_CMUL : thm
val IN_MEASURABLE_BOREL_CMUL_INDICATOR : thm
val IN_MEASURABLE_BOREL_CMUL_INDICATOR' : thm
val IN_MEASURABLE_BOREL_CO : thm
val IN_MEASURABLE_BOREL_CONST : thm
val IN_MEASURABLE_BOREL_CONST' : thm
val IN_MEASURABLE_BOREL_CR : thm
val IN_MEASURABLE_BOREL_EQ : thm
val IN_MEASURABLE_BOREL_EQ' : thm
val IN_MEASURABLE_BOREL_FN_MINUS : thm
val IN_MEASURABLE_BOREL_FN_PLUS : thm
val IN_MEASURABLE_BOREL_IMP : thm
val IN_MEASURABLE_BOREL_IMP_BOREL : thm
val IN_MEASURABLE_BOREL_IMP_BOREL' : thm
val IN_MEASURABLE_BOREL_INDICATOR : thm
val IN_MEASURABLE_BOREL_LE : thm
val IN_MEASURABLE_BOREL_LT : thm
val IN_MEASURABLE_BOREL_MAX : thm
val IN_MEASURABLE_BOREL_MAXIMAL : thm
val IN_MEASURABLE_BOREL_MIN : thm
val IN_MEASURABLE_BOREL_MINIMAL : thm
val IN_MEASURABLE_BOREL_MINUS : thm
val IN_MEASURABLE_BOREL_MONO_SUP : thm
val IN_MEASURABLE_BOREL_MUL : thm
val IN_MEASURABLE_BOREL_MUL_INDICATOR : thm
val IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ : thm
val IN_MEASURABLE_BOREL_NEGINF : thm
val IN_MEASURABLE_BOREL_NOT_NEGINF : thm
val IN_MEASURABLE_BOREL_NOT_POSINF : thm
val IN_MEASURABLE_BOREL_NOT_SING : thm
val IN_MEASURABLE_BOREL_OC : thm
val IN_MEASURABLE_BOREL_OO : thm
val IN_MEASURABLE_BOREL_OR : thm
val IN_MEASURABLE_BOREL_PLUS_MINUS : thm
val IN_MEASURABLE_BOREL_POSINF : thm
val IN_MEASURABLE_BOREL_POW : thm
val IN_MEASURABLE_BOREL_RC : thm
val IN_MEASURABLE_BOREL_RO : thm
val IN_MEASURABLE_BOREL_SING : thm
val IN_MEASURABLE_BOREL_SQR : thm
val IN_MEASURABLE_BOREL_SUB : thm
val IN_MEASURABLE_BOREL_SUB' : thm
val IN_MEASURABLE_BOREL_SUM : thm
val IN_MEASURABLE_BOREL_SUMINF : thm
val IN_MEASURABLE_BOREL_TIMES : thm
val IN_MEASURABLE_BOREL_TIMES' : thm
val MEASURABLE_BOREL : thm
val MEASURE_SPACE_LBOREL : thm
val SIGMA_ALGEBRA_BOREL : thm
val SIGMA_ALGEBRA_BOREL_2D : thm
val SIGMA_FINITE_LBOREL : thm
val SPACE_BOREL : thm
val SPACE_BOREL_2D : thm
val absolutely_integrable_on_indicator : thm
val borel_eq_real_set : thm
val borel_imp_lebesgue_measurable : thm
val borel_imp_lebesgue_sets : thm
val countably_additive_lebesgue : thm
val fn_minus : thm
val fn_minus_mul_indicator : thm
val fn_plus : thm
val fn_plus_mul_indicator : thm
val has_integral_indicator_UNIV : thm
val has_integral_interval_cube : thm
val in_borel_measurable_continuous_on : thm
val in_borel_measurable_from_Borel : thm
val in_borel_measurable_imp : thm
val in_measurable_sigma_pow : thm
val in_sets_lebesgue : thm
val in_sets_lebesgue_imp : thm
val indicator_fn_general_cross : thm
val indicator_fn_normal : thm
val indicator_fn_split : thm
val indicator_fn_suminf : thm
val integrable_indicator_UNIV : thm
val integral_indicator_UNIV : thm
val integral_one : thm
val lambda0_empty : thm
val lambda0_not_infty : thm
val lambda_closed_interval : thm
val lambda_closed_interval_content : thm
val lambda_empty : thm
val lambda_eq : thm
val lambda_eq_lebesgue : thm
val lambda_not_infty : thm
val lambda_open_interval : thm
val lambda_prop : thm
val lambda_sing : thm
val lborel0_additive : thm
val lborel0_finite_additive : thm
val lborel0_positive : thm
val lborel0_premeasure : thm
val lborel0_subadditive : thm
val lborel_subset_lebesgue : thm
val lebesgue_closed_interval : thm
val lebesgue_closed_interval_content : thm
val lebesgue_empty : thm
val lebesgue_eq_lambda : thm
val lebesgue_measure_iff_LIMSEQ : thm
val lebesgue_of_negligible : thm
val lebesgue_open_interval : thm
val lebesgue_sing : thm
val liminf_limsup : thm
val liminf_limsup_sp : thm
val limseq_indicator_BIGUNION : thm
val limsup_suminf_indicator : thm
val limsup_suminf_indicator_space : thm
val m_space_lborel : thm
val measure_lebesgue : thm
val measure_liminf : thm
val measure_limsup : thm
val measure_limsup_finite : thm
val measure_space_lborel : thm
val measure_space_lebesgue : thm
val negligible_in_lebesgue : thm
val nonneg_abs : thm
val nonneg_fn_abs : thm
val nonneg_fn_minus : thm
val nonneg_fn_plus : thm
val positive_lebesgue : thm
val seq_le_imp_lim_le : thm
val seq_mono_le : thm
val set_limsup_alt : thm
val sets_lborel : thm
val sets_lebesgue : thm
val sigma_algebra_lebesgue : thm
val sigma_finite_lborel : thm
val space_lborel : thm
val space_lebesgue : thm
val sup_sequence : thm
val borel_grammars : type_grammar.grammar * term_grammar.grammar
(*
[measure] Parent theory of "borel"
[real_borel] Parent theory of "borel"
[AE_def] Definition
β’ $AE = (Ξ»P. almost_everywhere lebesgue P)
[Borel] Definition
β’ Borel =
(π(:extreal),
{B' |
βB S.
B' = IMAGE Normal B βͺ S β§ B β subsets borel β§
S β {β
; {ββ}; {+β}; {ββ; +β}}})
[almost_everywhere_def] Definition
β’ βm P.
almost_everywhere m P β
βN. null_set m N β§ βx. x β m_space m DIFF N β P x
[ext_lborel_def] Definition
β’ ext_lborel = (space Borel,subsets Borel,lambda β real_set)
[fn_minus_def] Definition
β’ βf. fβ» = (Ξ»x. if f x < 0 then -f x else 0)
[fn_plus_def] Definition
β’ βf. fβΊ = (Ξ»x. if 0 < f x then f x else 0)
[indicator_fn_def] Definition
β’ βs. π s = (Ξ»x. if x β s then 1 else 0)
[lambda0_def] Definition
β’ βa b. a β€ b β lambda0 (right_open_interval a b) = Normal (b β a)
[lborel_def] Definition
β’ (βs. s β subsets right_open_intervals β lambda s = lambda0 s) β§
(m_space lborel,measurable_sets lborel) = borel β§
measure_space lborel
[lebesgue_def] Definition
β’ lebesgue =
(π(:real),{A | βn. indicator A integrable_on line n},
(Ξ»A. sup {Normal (integral (line n) (indicator A)) | n β π(:num)}))
[nonneg_def] Definition
β’ βf. nonneg f β βx. 0 β€ f x
[set_liminf_def] Definition
β’ βE. liminf E =
BIGUNION (IMAGE (Ξ»m. BIGINTER {E n | m β€ n}) π(:num))
[set_limsup_def] Definition
β’ βE. limsup E =
BIGINTER (IMAGE (Ξ»m. BIGUNION {E n | m β€ n}) π(:num))
[AE_ALT] Theorem
β’ βm P.
(AE x::m. P x) β
βN. null_set m N β§ {x | x β m_space m β§ Β¬P x} β N
[AE_I] Theorem
β’ βN M P.
null_set M N β {x | x β m_space M β§ Β¬P x} β N β AE x::M. P x
[AE_IMP_MEASURABLE_SETS] Theorem
β’ βm P.
complete_measure_space m β§ (AE x::m. P x) β
{x | x β m_space m β§ P x} β measurable_sets m
[AE_NOT_IN] Theorem
β’ βN M. null_set M N β AE x::M. x β N
[AE_THM] Theorem
β’ βm P. (AE x::m. P x) β almost_everywhere m P
[AE_all_S] Theorem
β’ βM S' P.
measure_space M β
(βi. S' i β AE x::M. (Ξ»x. P i x) x) β
βi'. AE x::M. (Ξ»x. S' i' β P i' x) x
[AE_all_countable] Theorem
β’ βt M P.
measure_space M β
((βi. COUNTABLE (t i) β AE x::M. (Ξ»x. P i x) x) β
βi. AE x::M. (Ξ»x. P i x) x)
[AE_default] Theorem
β’ βP. (AE x. P x) β AE x::lebesgue. P x
[AE_filter] Theorem
β’ βm P.
(AE x::m. P x) β
βN. N β null_set m β§ {x | x β m_space m β§ x β P} β N
[AE_iff_measurable] Theorem
β’ βN M P.
measure_space M β§ N β measurable_sets M β
{x | x β m_space M β§ Β¬P x} = N β
((AE x::M. P x) β measure M N = 0)
[AE_iff_null] Theorem
β’ βM P.
measure_space M β§ {x | x β m_space M β§ Β¬P x} β measurable_sets M β
((AE x::M. P x) β null_set M {x | x β m_space M β§ Β¬P x})
[AE_iff_null_sets] Theorem
β’ βN M.
measure_space M β§ N β measurable_sets M β
(null_set M N β AE x::M. {x | Β¬N x} x)
[AE_impl] Theorem
β’ βP M Q.
measure_space M β (P β AE x::M. Q x) β AE x::M. (Ξ»x. P β Q x) x
[AE_not_in] Theorem
β’ βN M. null_set M N β AE x::M. {x | Β¬N x} x
[BOREL_MEASURABLE_INFINITY] Theorem
β’ {+β} β subsets Borel β§ {ββ} β subsets Borel
[BOREL_MEASURABLE_SETS] Theorem
β’ (βc. {x | x < c} β subsets Borel) β§
(βc. {x | c < x} β subsets Borel) β§
(βc. {x | x β€ c} β subsets Borel) β§
(βc. {x | c β€ x} β subsets Borel) β§
(βc d. {x | c β€ x β§ x < d} β subsets Borel) β§
(βc d. {x | c < x β§ x β€ d} β subsets Borel) β§
(βc d. {x | c β€ x β§ x β€ d} β subsets Borel) β§
(βc d. {x | c < x β§ x < d} β subsets Borel) β§
(βc. {c} β subsets Borel) β§ βc. {x | x β c} β subsets Borel
[BOREL_MEASURABLE_SETS1] Theorem
β’ βc. {x | x < c} β subsets Borel
[BOREL_MEASURABLE_SETS10] Theorem
β’ βc. {x | x β c} β subsets Borel
[BOREL_MEASURABLE_SETS2] Theorem
β’ βc. {x | c β€ x} β subsets Borel
[BOREL_MEASURABLE_SETS3] Theorem
β’ βc. {x | x β€ c} β subsets Borel
[BOREL_MEASURABLE_SETS4] Theorem
β’ βc. {x | c < x} β subsets Borel
[BOREL_MEASURABLE_SETS5] Theorem
β’ βc d. {x | c β€ x β§ x < d} β subsets Borel
[BOREL_MEASURABLE_SETS6] Theorem
β’ βc d. {x | c < x β§ x β€ d} β subsets Borel
[BOREL_MEASURABLE_SETS7] Theorem
β’ βc d. {x | c β€ x β§ x β€ d} β subsets Borel
[BOREL_MEASURABLE_SETS8] Theorem
β’ βc d. {x | c < x β§ x < d} β subsets Borel
[BOREL_MEASURABLE_SETS9] Theorem
β’ βc. {c} β subsets Borel
[BOREL_MEASURABLE_SETS_CC] Theorem
β’ βc d. {x | c β€ x β§ x β€ d} β subsets Borel
[BOREL_MEASURABLE_SETS_CO] Theorem
β’ βc d. {x | c β€ x β§ x < d} β subsets Borel
[BOREL_MEASURABLE_SETS_CR] Theorem
β’ βc. {x | c β€ x} β subsets Borel
[BOREL_MEASURABLE_SETS_FINITE] Theorem
β’ βs. FINITE s β s β subsets Borel
[BOREL_MEASURABLE_SETS_NOT_SING] Theorem
β’ βc. {x | x β c} β subsets Borel
[BOREL_MEASURABLE_SETS_OC] Theorem
β’ βc d. {x | c < x β§ x β€ d} β subsets Borel
[BOREL_MEASURABLE_SETS_OO] Theorem
β’ βc d. {x | c < x β§ x < d} β subsets Borel
[BOREL_MEASURABLE_SETS_OR] Theorem
β’ βc. {x | c < x} β subsets Borel
[BOREL_MEASURABLE_SETS_RC] Theorem
β’ βc. {x | x β€ c} β subsets Borel
[BOREL_MEASURABLE_SETS_RO] Theorem
β’ βc. {x | x < c} β subsets Borel
[BOREL_MEASURABLE_SETS_SING] Theorem
β’ βc. {c} β subsets Borel
[BOREL_MEASURABLE_SETS_SING'] Theorem
β’ βc. {x | x = c} β subsets Borel
[Borel_def] Theorem
β’ Borel = sigma π(:extreal) (IMAGE (Ξ»a. {x | x < Normal a}) π(:real))
[Borel_eq_ge] Theorem
β’ Borel = sigma π(:extreal) (IMAGE (Ξ»a. {x | Normal a β€ x}) π(:real))
[Borel_eq_gr] Theorem
β’ Borel = sigma π(:extreal) (IMAGE (Ξ»a. {x | Normal a < x}) π(:real))
[Borel_eq_le] Theorem
β’ Borel = sigma π(:extreal) (IMAGE (Ξ»a. {x | x β€ Normal a}) π(:real))
[FN_ABS] Theorem
β’ βf x. (abs β f) x = fβΊ x + fβ» x
[FN_ABS'] Theorem
β’ βf. abs β f = (Ξ»x. fβΊ x + fβ» x)
[FN_DECOMP] Theorem
β’ βf x. f x = fβΊ x β fβ» x
[FN_DECOMP'] Theorem
β’ βf. f = (Ξ»x. fβΊ x β fβ» x)
[FN_MINUS_ABS_ZERO] Theorem
β’ βf. (abs β f)β» = (Ξ»x. 0)
[FN_MINUS_ADD_LE] Theorem
β’ βf g x.
f x β ββ β§ g x β ββ β¨ f x β +β β§ g x β +β β
(Ξ»x. f x + g x)β» x β€ fβ» x + gβ» x
[FN_MINUS_ALT] Theorem
β’ βf. fβ» = (Ξ»x. -min (f x) 0)
[FN_MINUS_ALT'] Theorem
β’ βf. fβ» = (Ξ»x. -min 0 (f x))
[FN_MINUS_CMUL] Theorem
β’ βf c.
(0 β€ c β (Ξ»x. Normal c * f x)β» = (Ξ»x. Normal c * fβ» x)) β§
(c β€ 0 β (Ξ»x. Normal c * f x)β» = (Ξ»x. -Normal c * fβΊ x))
[FN_MINUS_CMUL_full] Theorem
β’ βf c.
(0 β€ c β (Ξ»x. c * f x)β» = (Ξ»x. c * fβ» x)) β§
(c β€ 0 β (Ξ»x. c * f x)β» = (Ξ»x. -c * fβΊ x))
[FN_MINUS_FMUL] Theorem
β’ βf c. (βx. 0 β€ c x) β (Ξ»x. c x * f x)β» = (Ξ»x. c x * fβ» x)
[FN_MINUS_INFTY_IMP] Theorem
β’ βf x. fβ» x = +β β fβΊ x = 0
[FN_MINUS_LE_ABS] Theorem
β’ βf x. fβ» x β€ abs (f x)
[FN_MINUS_NOT_INFTY] Theorem
β’ βf. (βx. f x β ββ) β βx. fβ» x β +β
[FN_MINUS_NOT_INFTY'] Theorem
β’ βf x. f x β ββ β fβ» x β +β
[FN_MINUS_POS] Theorem
β’ βg x. 0 β€ gβ» x
[FN_MINUS_POS_ZERO] Theorem
β’ βg. (βx. 0 β€ g x) β gβ» = (Ξ»x. 0)
[FN_MINUS_REDUCE] Theorem
β’ βf x. 0 β€ f x β fβ» x = 0
[FN_MINUS_TO_PLUS] Theorem
β’ βf. (Ξ»x. -f x)β» = fβΊ
[FN_MINUS_ZERO] Theorem
β’ (Ξ»x. 0)β» = (Ξ»x. 0)
[FN_PLUS_ABS_SELF] Theorem
β’ βf. (abs β f)βΊ = abs β f
[FN_PLUS_ADD_LE] Theorem
β’ βf g x. (Ξ»x. f x + g x)βΊ x β€ fβΊ x + gβΊ x
[FN_PLUS_ALT] Theorem
β’ βf. fβΊ = (Ξ»x. max (f x) 0)
[FN_PLUS_ALT'] Theorem
β’ βf. fβΊ = (Ξ»x. max 0 (f x))
[FN_PLUS_CMUL] Theorem
β’ βf c.
(0 β€ c β (Ξ»x. Normal c * f x)βΊ = (Ξ»x. Normal c * fβΊ x)) β§
(c β€ 0 β (Ξ»x. Normal c * f x)βΊ = (Ξ»x. -Normal c * fβ» x))
[FN_PLUS_CMUL_full] Theorem
β’ βf c.
(0 β€ c β (Ξ»x. c * f x)βΊ = (Ξ»x. c * fβΊ x)) β§
(c β€ 0 β (Ξ»x. c * f x)βΊ = (Ξ»x. -c * fβ» x))
[FN_PLUS_FMUL] Theorem
β’ βf c. (βx. 0 β€ c x) β (Ξ»x. c x * f x)βΊ = (Ξ»x. c x * fβΊ x)
[FN_PLUS_INFTY_IMP] Theorem
β’ βf x. fβΊ x = +β β fβ» x = 0
[FN_PLUS_LE_ABS] Theorem
β’ βf x. fβΊ x β€ abs (f x)
[FN_PLUS_NEG_ZERO] Theorem
β’ βg. (βx. g x β€ 0) β gβΊ = (Ξ»x. 0)
[FN_PLUS_NOT_INFTY] Theorem
β’ βf. (βx. f x β +β) β βx. fβΊ x β +β
[FN_PLUS_NOT_INFTY'] Theorem
β’ βf x. f x β +β β fβΊ x β +β
[FN_PLUS_POS] Theorem
β’ βg x. 0 β€ gβΊ x
[FN_PLUS_POS_ID] Theorem
β’ βg. (βx. 0 β€ g x) β gβΊ = g
[FN_PLUS_REDUCE] Theorem
β’ βf x. 0 β€ f x β fβΊ x = f x
[FN_PLUS_TO_MINUS] Theorem
β’ βf. (Ξ»x. -f x)βΊ = fβ»
[FN_PLUS_ZERO] Theorem
β’ (Ξ»x. 0)βΊ = (Ξ»x. 0)
[FORALL_IMP_AE] Theorem
β’ βm P. measure_space m β§ (βx. x β m_space m β P x) β AE x::m. P x
[INDICATOR_FN_ABS] Theorem
β’ βs. abs β π s = π s
[INDICATOR_FN_ABS_MUL] Theorem
β’ βf s. abs β (Ξ»x. f x * π s x) = (Ξ»x. (abs β f) x * π s x)
[INDICATOR_FN_CROSS] Theorem
β’ βs t x y. π (s Γ t) (x,y) = π s x * π t y
[INDICATOR_FN_DIFF] Theorem
β’ βA B. π (A DIFF B) = (Ξ»t. π A t β π (A β© B) t)
[INDICATOR_FN_DIFF_SPACE] Theorem
β’ βA B sp.
A β sp β§ B β sp β π (A β© (sp DIFF B)) = (Ξ»t. π A t β π (A β© B) t)
[INDICATOR_FN_EMPTY] Theorem
β’ βx. π β
x = 0
[INDICATOR_FN_FCP_CROSS] Theorem
β’ βs t x y.
FINITE π(:Ξ²) β§ FINITE π(:Ξ³) β
π (fcp_cross s t) (FCP_CONCAT x y) = π s x * π t y
[INDICATOR_FN_INTER] Theorem
β’ βA B. π (A β© B) = (Ξ»t. π A t * π B t)
[INDICATOR_FN_INTER_MIN] Theorem
β’ βA B. π (A β© B) = (Ξ»t. min (π A t) (π B t))
[INDICATOR_FN_LE_1] Theorem
β’ βs x. π s x β€ 1
[INDICATOR_FN_MONO] Theorem
β’ βs t x. s β t β π s x β€ π t x
[INDICATOR_FN_MUL_INTER] Theorem
β’ βA B. (Ξ»t. π A t * π B t) = (Ξ»t. π (A β© B) t)
[INDICATOR_FN_NOT_INFTY] Theorem
β’ βs x. π s x β ββ β§ π s x β +β
[INDICATOR_FN_POS] Theorem
β’ βs x. 0 β€ π s x
[INDICATOR_FN_SING_0] Theorem
β’ βx y. x β y β π {x} y = 0
[INDICATOR_FN_SING_1] Theorem
β’ βx y. x = y β π {x} y = 1
[INDICATOR_FN_UNION] Theorem
β’ βA B. π (A βͺ B) = (Ξ»t. π A t + π B t β π (A β© B) t)
[INDICATOR_FN_UNION_MAX] Theorem
β’ βA B. π (A βͺ B) = (Ξ»t. max (π A t) (π B t))
[INDICATOR_FN_UNION_MIN] Theorem
β’ βA B. π (A βͺ B) = (Ξ»t. min (π A t + π B t) 1)
[IN_LIMINF] Theorem
β’ βA x. x β liminf A β βm. βn. m β€ n β x β A n
[IN_LIMSUP] Theorem
β’ βA x. x β limsup A β βN. INFINITE N β§ βn. n β N β x β A n
[IN_MEASURABLE_BOREL] Theorem
β’ βf a.
f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc. {x | f x < Normal c} β© space a β subsets a
[IN_MEASURABLE_BOREL_2D_FUNCTION] Theorem
β’ βa X Y f.
sigma_algebra a β§ X β Borel_measurable a β§
Y β Borel_measurable a β§ f β Borel_measurable (Borel Γ Borel) β
(Ξ»x. f (X x,Y x)) β Borel_measurable a
[IN_MEASURABLE_BOREL_2D_VECTOR] Theorem
β’ βa X Y.
sigma_algebra a β§ X β Borel_measurable a β§ Y β Borel_measurable a β
(Ξ»x. (X x,Y x)) β measurable a (Borel Γ Borel)
[IN_MEASURABLE_BOREL_ABS] Theorem
β’ βa f g.
sigma_algebra a β§ f β Borel_measurable a β§
(βx. x β space a β g x = abs (f x)) β
g β Borel_measurable a
[IN_MEASURABLE_BOREL_ABS'] Theorem
β’ βa f.
sigma_algebra a β§ f β Borel_measurable a β
abs β f β Borel_measurable a
[IN_MEASURABLE_BOREL_ADD] Theorem
β’ βa f g h.
sigma_algebra a β§ f β Borel_measurable a β§
g β Borel_measurable a β§
(βx. x β space a β f x β ββ β§ g x β ββ β¨ f x β +β β§ g x β +β) β§
(βx. x β space a β h x = f x + g x) β
h β Borel_measurable a
[IN_MEASURABLE_BOREL_ADD'] Theorem
β’ βa f g h.
sigma_algebra a β§ f β Borel_measurable a β§
g β Borel_measurable a β§ (βx. x β space a β h x = f x + g x) β
h β Borel_measurable a
[IN_MEASURABLE_BOREL_AE_EQ] Theorem
β’ βm f g.
complete_measure_space m β§ (AE x::m. f x = g x) β§
f β Borel_measurable (m_space m,measurable_sets m) β
g β Borel_measurable (m_space m,measurable_sets m)
[IN_MEASURABLE_BOREL_ALL] Theorem
β’ βf a.
f β Borel_measurable a β
(βc. {x | f x < c} β© space a β subsets a) β§
(βc. {x | c β€ f x} β© space a β subsets a) β§
(βc. {x | f x β€ c} β© space a β subsets a) β§
(βc. {x | c < f x} β© space a β subsets a) β§
(βc d. {x | c β€ f x β§ f x < d} β© space a β subsets a) β§
(βc d. {x | c < f x β§ f x β€ d} β© space a β subsets a) β§
(βc d. {x | c β€ f x β§ f x β€ d} β© space a β subsets a) β§
(βc d. {x | c < f x β§ f x < d} β© space a β subsets a) β§
(βc. {x | f x = c} β© space a β subsets a) β§
βc. {x | f x β c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALL_MEASURE] Theorem
β’ βf m.
f β Borel_measurable (m_space m,measurable_sets m) β
(βc. {x | f x < c} β© m_space m β measurable_sets m) β§
(βc. {x | c β€ f x} β© m_space m β measurable_sets m) β§
(βc. {x | f x β€ c} β© m_space m β measurable_sets m) β§
(βc. {x | c < f x} β© m_space m β measurable_sets m) β§
(βc d. {x | c β€ f x β§ f x < d} β© m_space m β measurable_sets m) β§
(βc d. {x | c < f x β§ f x β€ d} β© m_space m β measurable_sets m) β§
(βc d. {x | c β€ f x β§ f x β€ d} β© m_space m β measurable_sets m) β§
(βc d. {x | c < f x β§ f x < d} β© m_space m β measurable_sets m) β§
(βc. {x | f x = c} β© m_space m β measurable_sets m) β§
βc. {x | f x β c} β© m_space m β measurable_sets m
[IN_MEASURABLE_BOREL_ALT1] Theorem
β’ βf a.
f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc. {x | Normal c β€ f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT1_IMP] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | c β€ f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT2] Theorem
β’ βf a.
f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc. {x | f x β€ Normal c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT2_IMP] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x β€ c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT3] Theorem
β’ βf a.
f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc. {x | Normal c < f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT3_IMP] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | c < f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT4] Theorem
β’ βf a.
(βx. f x β ββ) β
(f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc d.
{x | Normal c β€ f x β§ f x < Normal d} β© space a β subsets a)
[IN_MEASURABLE_BOREL_ALT4_IMP] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c β€ f x β§ f x < d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT5] Theorem
β’ βf a.
(βx. f x β ββ) β
(f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc d.
{x | Normal c < f x β§ f x β€ Normal d} β© space a β subsets a)
[IN_MEASURABLE_BOREL_ALT5_IMP] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c < f x β§ f x β€ d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT6] Theorem
β’ βf a.
(βx. f x β ββ) β
(f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc d.
{x | Normal c β€ f x β§ f x β€ Normal d} β© space a β subsets a)
[IN_MEASURABLE_BOREL_ALT6_IMP] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c β€ f x β§ f x β€ d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT7] Theorem
β’ βf a.
(βx. f x β ββ) β
(f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc d.
{x | Normal c < f x β§ f x < Normal d} β© space a β subsets a)
[IN_MEASURABLE_BOREL_ALT7_IMP] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c < f x β§ f x < d} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT8] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x = c} β© space a β subsets a
[IN_MEASURABLE_BOREL_ALT9] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x β c} β© space a β subsets a
[IN_MEASURABLE_BOREL_BOREL_ABS] Theorem
β’ abs β Borel_measurable Borel
[IN_MEASURABLE_BOREL_BOREL_I] Theorem
β’ (Ξ»x. x) β Borel_measurable Borel
[IN_MEASURABLE_BOREL_CC] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c β€ f x β§ f x β€ d} β© space a β subsets a
[IN_MEASURABLE_BOREL_CMUL] Theorem
β’ βa f g z.
sigma_algebra a β§ f β Borel_measurable a β§
(βx. x β space a β g x = Normal z * f x) β
g β Borel_measurable a
[IN_MEASURABLE_BOREL_CMUL_INDICATOR] Theorem
β’ βa z s.
sigma_algebra a β§ s β subsets a β
(Ξ»x. Normal z * π s x) β Borel_measurable a
[IN_MEASURABLE_BOREL_CMUL_INDICATOR'] Theorem
β’ βa c s.
sigma_algebra a β§ s β subsets a β
(Ξ»x. c * π s x) β Borel_measurable a
[IN_MEASURABLE_BOREL_CO] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c β€ f x β§ f x < d} β© space a β subsets a
[IN_MEASURABLE_BOREL_CONST] Theorem
β’ βa k f.
sigma_algebra a β§ (βx. x β space a β f x = k) β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_CONST'] Theorem
β’ βa k. sigma_algebra a β (Ξ»x. k) β Borel_measurable a
[IN_MEASURABLE_BOREL_CR] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | c β€ f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_EQ] Theorem
β’ βm f g.
(βx. x β m_space m β f x = g x) β§
g β Borel_measurable (m_space m,measurable_sets m) β
f β Borel_measurable (m_space m,measurable_sets m)
[IN_MEASURABLE_BOREL_EQ'] Theorem
β’ βa f g.
(βx. x β space a β f x = g x) β§ g β Borel_measurable a β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_FN_MINUS] Theorem
β’ βa f. f β Borel_measurable a β fβ» β Borel_measurable a
[IN_MEASURABLE_BOREL_FN_PLUS] Theorem
β’ βa f. f β Borel_measurable a β fβΊ β Borel_measurable a
[IN_MEASURABLE_BOREL_IMP] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x < c} β© space a β subsets a
[IN_MEASURABLE_BOREL_IMP_BOREL] Theorem
β’ βf m.
f β borel_measurable (m_space m,measurable_sets m) β
Normal β f β Borel_measurable (m_space m,measurable_sets m)
[IN_MEASURABLE_BOREL_IMP_BOREL'] Theorem
β’ βa f.
sigma_algebra a β§ f β borel_measurable a β
Normal β f β Borel_measurable a
[IN_MEASURABLE_BOREL_INDICATOR] Theorem
β’ βa A f.
sigma_algebra a β§ A β subsets a β§ (βx. x β space a β f x = π A x) β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_LE] Theorem
β’ βa f g.
f β Borel_measurable a β§ g β Borel_measurable a β
{x | f x β€ g x} β© space a β subsets a
[IN_MEASURABLE_BOREL_LT] Theorem
β’ βf g a.
f β Borel_measurable a β§ g β Borel_measurable a β
{x | f x < g x} β© space a β subsets a
[IN_MEASURABLE_BOREL_MAX] Theorem
β’ βa f g.
sigma_algebra a β§ f β Borel_measurable a β§ g β Borel_measurable a β
(Ξ»x. max (f x) (g x)) β Borel_measurable a
[IN_MEASURABLE_BOREL_MAXIMAL] Theorem
β’ βN. FINITE N β
βg f a.
sigma_algebra a β§ (βn. g n β Borel_measurable a) β§
(βx. f x = sup (IMAGE (Ξ»n. g n x) N)) β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_MIN] Theorem
β’ βa f g.
sigma_algebra a β§ f β Borel_measurable a β§ g β Borel_measurable a β
(Ξ»x. min (f x) (g x)) β Borel_measurable a
[IN_MEASURABLE_BOREL_MINIMAL] Theorem
β’ βN. FINITE N β
βg f a.
sigma_algebra a β§ (βn. g n β Borel_measurable a) β§
(βx. f x = inf (IMAGE (Ξ»n. g n x) N)) β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_MINUS] Theorem
β’ βa f g.
sigma_algebra a β§ f β Borel_measurable a β§
(βx. x β space a β g x = -f x) β
g β Borel_measurable a
[IN_MEASURABLE_BOREL_MONO_SUP] Theorem
β’ βfn f a.
sigma_algebra a β§ (βn. fn n β Borel_measurable a) β§
(βn x. x β space a β fn n x β€ fn (SUC n) x) β§
(βx. x β space a β f x = sup (IMAGE (Ξ»n. fn n x) π(:num))) β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_MUL] Theorem
β’ βa f g h.
sigma_algebra a β§ f β Borel_measurable a β§
g β Borel_measurable a β§ (βx. x β space a β h x = f x * g x) β§
(βx. x β space a β f x β ββ β§ f x β +β β§ g x β ββ β§ g x β +β) β
h β Borel_measurable a
[IN_MEASURABLE_BOREL_MUL_INDICATOR] Theorem
β’ βa f s.
sigma_algebra a β§ f β Borel_measurable a β§ s β subsets a β
(Ξ»x. f x * π s x) β Borel_measurable a
[IN_MEASURABLE_BOREL_MUL_INDICATOR_EQ] Theorem
β’ βa f.
sigma_algebra a β
(f β Borel_measurable a β
(Ξ»x. f x * π (space a) x) β Borel_measurable a)
[IN_MEASURABLE_BOREL_NEGINF] Theorem
β’ βf a. f β Borel_measurable a β {x | f x = ββ} β© space a β subsets a
[IN_MEASURABLE_BOREL_NOT_NEGINF] Theorem
β’ βf a. f β Borel_measurable a β {x | f x β ββ} β© space a β subsets a
[IN_MEASURABLE_BOREL_NOT_POSINF] Theorem
β’ βf a. f β Borel_measurable a β {x | f x β +β} β© space a β subsets a
[IN_MEASURABLE_BOREL_NOT_SING] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x β c} β© space a β subsets a
[IN_MEASURABLE_BOREL_OC] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c < f x β§ f x β€ d} β© space a β subsets a
[IN_MEASURABLE_BOREL_OO] Theorem
β’ βf a.
f β Borel_measurable a β
βc d. {x | c < f x β§ f x < d} β© space a β subsets a
[IN_MEASURABLE_BOREL_OR] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | c < f x} β© space a β subsets a
[IN_MEASURABLE_BOREL_PLUS_MINUS] Theorem
β’ βa f.
f β Borel_measurable a β
fβΊ β Borel_measurable a β§ fβ» β Borel_measurable a
[IN_MEASURABLE_BOREL_POSINF] Theorem
β’ βf a. f β Borel_measurable a β {x | f x = +β} β© space a β subsets a
[IN_MEASURABLE_BOREL_POW] Theorem
β’ βn a f.
sigma_algebra a β§ f β Borel_measurable a β§
(βx. x β space a β f x β ββ β§ f x β +β) β
(Ξ»x. f x pow n) β Borel_measurable a
[IN_MEASURABLE_BOREL_RC] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x β€ c} β© space a β subsets a
[IN_MEASURABLE_BOREL_RO] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x < c} β© space a β subsets a
[IN_MEASURABLE_BOREL_SING] Theorem
β’ βf a.
f β Borel_measurable a β βc. {x | f x = c} β© space a β subsets a
[IN_MEASURABLE_BOREL_SQR] Theorem
β’ βa f g.
sigma_algebra a β§ f β Borel_measurable a β§
(βx. x β space a β g x = (f x)Β²) β
g β Borel_measurable a
[IN_MEASURABLE_BOREL_SUB] Theorem
β’ βa f g h.
sigma_algebra a β§ f β Borel_measurable a β§
g β Borel_measurable a β§
(βx. x β space a β f x β ββ β§ g x β +β β¨ f x β +β β§ g x β ββ) β§
(βx. x β space a β h x = f x β g x) β
h β Borel_measurable a
[IN_MEASURABLE_BOREL_SUB'] Theorem
β’ βa f g h.
sigma_algebra a β§ f β Borel_measurable a β§
g β Borel_measurable a β§ (βx. x β space a β h x = f x β g x) β
h β Borel_measurable a
[IN_MEASURABLE_BOREL_SUM] Theorem
β’ βa f g s.
FINITE s β§ sigma_algebra a β§
(βi. i β s β f i β Borel_measurable a) β§
(βi x. i β s β§ x β space a β f i x β ββ) β§
(βx. x β space a β g x = β (Ξ»i. f i x) s) β
g β Borel_measurable a
[IN_MEASURABLE_BOREL_SUMINF] Theorem
β’ βfn f a.
sigma_algebra a β§ (βn. fn n β Borel_measurable a) β§
(βi x. x β space a β 0 β€ fn i x) β§
(βx. x β space a β f x = suminf (Ξ»n. fn n x)) β
f β Borel_measurable a
[IN_MEASURABLE_BOREL_TIMES] Theorem
β’ βm f g h.
measure_space m β§
f β Borel_measurable (m_space m,measurable_sets m) β§
g β Borel_measurable (m_space m,measurable_sets m) β§
(βx. x β m_space m β h x = f x * g x) β
h β Borel_measurable (m_space m,measurable_sets m)
[IN_MEASURABLE_BOREL_TIMES'] Theorem
β’ βa f g h.
sigma_algebra a β§ f β Borel_measurable a β§
g β Borel_measurable a β§ (βx. x β space a β h x = f x * g x) β
h β Borel_measurable a
[MEASURABLE_BOREL] Theorem
β’ βf a.
f β Borel_measurable a β
sigma_algebra a β§ f β (space a β π(:extreal)) β§
βc. PREIMAGE f {x | x < Normal c} β© space a β subsets a
[MEASURE_SPACE_LBOREL] Theorem
β’ measure_space ext_lborel
[SIGMA_ALGEBRA_BOREL] Theorem
β’ sigma_algebra Borel
[SIGMA_ALGEBRA_BOREL_2D] Theorem
β’ sigma_algebra (Borel Γ Borel)
[SIGMA_FINITE_LBOREL] Theorem
β’ sigma_finite ext_lborel
[SPACE_BOREL] Theorem
β’ space Borel = π(:extreal)
[SPACE_BOREL_2D] Theorem
β’ space (Borel Γ Borel) = π(:extreal # extreal)
[absolutely_integrable_on_indicator] Theorem
β’ βA X.
indicator A absolutely_integrable_on X β
indicator A integrable_on X
[borel_eq_real_set] Theorem
β’ borel = (π(:real),IMAGE real_set (subsets Borel))
[borel_imp_lebesgue_measurable] Theorem
β’ βf. f β borel_measurable (space borel,subsets borel) β
f β
borel_measurable (m_space lebesgue,measurable_sets lebesgue)
[borel_imp_lebesgue_sets] Theorem
β’ βs. s β subsets borel β s β measurable_sets lebesgue
[countably_additive_lebesgue] Theorem
β’ countably_additive lebesgue
[fn_minus] Theorem
β’ βf x. fβ» x = -min 0 (f x)
[fn_minus_mul_indicator] Theorem
β’ βf s. (Ξ»x. f x * π s x)β» = (Ξ»x. fβ» x * π s x)
[fn_plus] Theorem
β’ βf x. fβΊ x = max 0 (f x)
[fn_plus_mul_indicator] Theorem
β’ βf s. (Ξ»x. f x * π s x)βΊ = (Ξ»x. fβΊ x * π s x)
[has_integral_indicator_UNIV] Theorem
β’ βs A x.
(indicator (s β© A) has_integral x) π(:real) β
(indicator s has_integral x) A
[has_integral_interval_cube] Theorem
β’ βa b n.
(indicator (interval [(a,b)]) has_integral
content (interval [(a,b)] β© line n)) (line n)
[in_borel_measurable_continuous_on] Theorem
β’ βf. f continuous_on π(:real) β f β borel_measurable borel
[in_borel_measurable_from_Borel] Theorem
β’ βa f. f β Borel_measurable a β real β f β borel_measurable a
[in_borel_measurable_imp] Theorem
β’ βm f.
measure_space m β§
(βs. open s β PREIMAGE f s β© m_space m β measurable_sets m) β
f β borel_measurable (m_space m,measurable_sets m)
[in_measurable_sigma_pow] Theorem
β’ βm sp N f.
measure_space m β§ N β POW sp β§ f β (m_space m β sp) β§
(βy. y β N β PREIMAGE f y β© m_space m β measurable_sets m) β
f β measurable (m_space m,measurable_sets m) (sigma sp N)
[in_sets_lebesgue] Theorem
β’ βA. (βn. indicator A integrable_on line n) β
A β measurable_sets lebesgue
[in_sets_lebesgue_imp] Theorem
β’ βA n.
A β measurable_sets lebesgue β indicator A integrable_on line n
[indicator_fn_general_cross] Theorem
β’ βcons car cdr s t x y.
pair_operation cons car cdr β
π (general_cross cons s t) (cons x y) = π s x * π t y
[indicator_fn_normal] Theorem
β’ βs x. βr. π s x = Normal r β§ 0 β€ r β§ r β€ 1
[indicator_fn_split] Theorem
β’ βr s b.
FINITE r β§ BIGUNION (IMAGE b r) = s β§
(βi j. i β r β§ j β r β§ i β j β DISJOINT (b i) (b j)) β
βa. a β s β π a = (Ξ»x. β (Ξ»i. π (a β© b i) x) r)
[indicator_fn_suminf] Theorem
β’ βa x.
(βm n. m β n β DISJOINT (a m) (a n)) β
suminf (Ξ»i. π (a i) x) = π (BIGUNION (IMAGE a π(:num))) x
[integrable_indicator_UNIV] Theorem
β’ βs A.
indicator (s β© A) integrable_on π(:real) β
indicator s integrable_on A
[integral_indicator_UNIV] Theorem
β’ βs A.
integral π(:real) (indicator (s β© A)) = integral A (indicator s)
[integral_one] Theorem
β’ βA. integral A (Ξ»x. 1) = integral π(:real) (indicator A)
[lambda0_empty] Theorem
β’ lambda0 β
= 0
[lambda0_not_infty] Theorem
β’ βa b.
lambda0 (right_open_interval a b) β +β β§
lambda0 (right_open_interval a b) β ββ
[lambda_closed_interval] Theorem
β’ βa b. a β€ b β lambda (interval [(a,b)]) = Normal (b β a)
[lambda_closed_interval_content] Theorem
β’ βa b.
lambda (interval [(a,b)]) = Normal (content (interval [(a,b)]))
[lambda_empty] Theorem
β’ lambda β
= 0
[lambda_eq] Theorem
β’ βm. (βa b.
measure m (interval [(a,b)]) =
Normal (content (interval [(a,b)]))) β§ measure_space m β§
m_space m = space borel β§ measurable_sets m = subsets borel β
βs. s β subsets borel β lambda s = measure m s
[lambda_eq_lebesgue] Theorem
β’ βs. s β subsets borel β lambda s = measure lebesgue s
[lambda_not_infty] Theorem
β’ βa b.
lambda (right_open_interval a b) β +β β§
lambda (right_open_interval a b) β ββ
[lambda_open_interval] Theorem
β’ βa b. a β€ b β lambda (interval (a,b)) = Normal (b β a)
[lambda_prop] Theorem
β’ βa b. a β€ b β lambda (right_open_interval a b) = Normal (b β a)
[lambda_sing] Theorem
β’ βc. lambda {c} = 0
[lborel0_additive] Theorem
β’ additive lborel0
[lborel0_finite_additive] Theorem
β’ finite_additive lborel0
[lborel0_positive] Theorem
β’ positive lborel0
[lborel0_premeasure] Theorem
β’ premeasure lborel0
[lborel0_subadditive] Theorem
β’ subadditive lborel0
[lborel_subset_lebesgue] Theorem
β’ measurable_sets lborel β measurable_sets lebesgue
[lebesgue_closed_interval] Theorem
β’ βa b. a β€ b β measure lebesgue (interval [(a,b)]) = Normal (b β a)
[lebesgue_closed_interval_content] Theorem
β’ βa b.
measure lebesgue (interval [(a,b)]) =
Normal (content (interval [(a,b)]))
[lebesgue_empty] Theorem
β’ measure lebesgue β
= 0
[lebesgue_eq_lambda] Theorem
β’ βs. s β subsets borel β measure lebesgue s = lambda s
[lebesgue_measure_iff_LIMSEQ] Theorem
β’ βA m.
A β measurable_sets lebesgue β§ 0 β€ m β
(measure lebesgue A = Normal m β
((Ξ»n. integral (line n) (indicator A)) --> m) sequentially)
[lebesgue_of_negligible] Theorem
β’ βs. negligible s β measure lebesgue s = 0
[lebesgue_open_interval] Theorem
β’ βa b. a β€ b β measure lebesgue (interval (a,b)) = Normal (b β a)
[lebesgue_sing] Theorem
β’ βc. measure lebesgue {c} = 0
[liminf_limsup] Theorem
β’ βE. COMPL (liminf E) = limsup (COMPL β E)
[liminf_limsup_sp] Theorem
β’ βsp E. (βn. E n β sp) β sp DIFF liminf E = limsup (Ξ»n. sp DIFF E n)
[limseq_indicator_BIGUNION] Theorem
β’ βA x.
((Ξ»k. indicator (BIGUNION {A i | i < k}) x) -->
indicator (BIGUNION {A i | i β π(:num)}) x) sequentially
[limsup_suminf_indicator] Theorem
β’ βA. limsup A = {x | suminf (Ξ»n. π (A n) x) = +β}
[limsup_suminf_indicator_space] Theorem
β’ βa A.
sigma_algebra a β§ (βn. A n β subsets a) β
limsup A = {x | x β space a β§ suminf (Ξ»n. π (A n) x) = +β}
[m_space_lborel] Theorem
β’ m_space lborel = space borel
[measure_lebesgue] Theorem
β’ measure lebesgue =
(Ξ»A. sup {Normal (integral (line n) (indicator A)) | n β π(:num)})
[measure_liminf] Theorem
β’ βp A.
measure_space p β§ (βn. A n β measurable_sets p) β
measure p (liminf A) =
sup (IMAGE (Ξ»m. measure p (BIGINTER {A n | m β€ n})) π(:num))
[measure_limsup] Theorem
β’ βp A.
measure_space p β§ measure p (BIGUNION (IMAGE A π(:num))) < +β β§
(βn. A n β measurable_sets p) β
measure p (limsup A) =
inf (IMAGE (Ξ»m. measure p (BIGUNION {A n | m β€ n})) π(:num))
[measure_limsup_finite] Theorem
β’ βp A.
measure_space p β§ measure p (m_space p) < +β β§
(βn. A n β measurable_sets p) β
measure p (limsup A) =
inf (IMAGE (Ξ»m. measure p (BIGUNION {A n | m β€ n})) π(:num))
[measure_space_lborel] Theorem
β’ measure_space lborel
[measure_space_lebesgue] Theorem
β’ measure_space lebesgue
[negligible_in_lebesgue] Theorem
β’ βs. negligible s β s β measurable_sets lebesgue
[nonneg_abs] Theorem
β’ βf. nonneg (abs β f)
[nonneg_fn_abs] Theorem
β’ βf. nonneg f β abs β f = f
[nonneg_fn_minus] Theorem
β’ βf. nonneg f β fβ» = (Ξ»x. 0)
[nonneg_fn_plus] Theorem
β’ βf. nonneg f β fβΊ = f
[positive_lebesgue] Theorem
β’ positive lebesgue
[seq_le_imp_lim_le] Theorem
β’ βx y f. (βn. f n β€ x) β§ (f --> y) sequentially β y β€ x
[seq_mono_le] Theorem
β’ βf x n. (βn. f n β€ f (n + 1)) β§ (f --> x) sequentially β f n β€ x
[set_limsup_alt] Theorem
β’ βE. limsup E =
BIGINTER (IMAGE (Ξ»n. BIGUNION (IMAGE E (from n))) π(:num))
[sets_lborel] Theorem
β’ measurable_sets lborel = subsets borel
[sets_lebesgue] Theorem
β’ measurable_sets lebesgue =
{A | βn. indicator A integrable_on line n}
[sigma_algebra_lebesgue] Theorem
β’ sigma_algebra (π(:real),{A | βn. indicator A integrable_on line n})
[sigma_finite_lborel] Theorem
β’ sigma_finite lborel
[space_lborel] Theorem
β’ m_space lborel = π(:real)
[space_lebesgue] Theorem
β’ m_space lebesgue = π(:real)
[sup_sequence] Theorem
β’ βf l.
mono_increasing f β
((f --> l) sequentially β
sup (IMAGE (Ξ»n. Normal (f n)) π(:num)) = Normal l)
*)
end
HOL 4, Kananaskis-14