Structure bftTheory
signature bftTheory =
sig
type thm = Thm.thm
(* Definitions *)
val Rel_def : thm
(* Theorems *)
val BFT_ALL_DISTINCT : thm
val BFT_CONS : thm
val BFT_FOLD : thm
val BFT_REACH_1 : thm
val BFT_REACH_2 : thm
val BFT_REACH_THM : thm
val BFT_def : thm
val BFT_ind : thm
val bft_grammars : type_grammar.grammar * term_grammar.grammar
(*
[dirGraph] Parent theory of "bft"
[Rel_def] Definition
⊢ ∀G f seen fringe acc.
Rel (G,f,seen,fringe,acc) =
(CARD (Parents G DIFF set seen),LENGTH fringe)
[BFT_ALL_DISTINCT] Theorem
⊢ ∀G seen fringe.
FINITE (Parents G) ⇒ ALL_DISTINCT (BFT G CONS seen fringe [])
[BFT_CONS] Theorem
⊢ ∀G f seen fringe acc a b.
FINITE (Parents G) ∧ f = CONS ∧ acc = a ⧺ b ⇒
BFT G f seen fringe acc = BFT G f seen fringe a ⧺ b
[BFT_FOLD] Theorem
⊢ ∀G f seen fringe acc.
FINITE (Parents G) ⇒
BFT G f seen fringe acc = FOLDR f acc (BFT G CONS seen fringe [])
[BFT_REACH_1] Theorem
⊢ ∀G f seen fringe acc.
FINITE (Parents G) ∧ f = CONS ⇒
∀x. MEM x (BFT G f seen fringe acc) ⇒
x ∈ REACH_LIST G fringe ∨ MEM x acc
[BFT_REACH_2] Theorem
⊢ ∀G f seen fringe acc x.
FINITE (Parents G) ∧ f = CONS ∧
x ∈ REACH_LIST (EXCLUDE G (set seen)) fringe ∧ ¬MEM x seen ⇒
MEM x (BFT G f seen fringe acc)
[BFT_REACH_THM] Theorem
⊢ ∀G fringe.
FINITE (Parents G) ⇒
∀x. x ∈ REACH_LIST G fringe ⇔ MEM x (BFT G CONS [] fringe [])
[BFT_def] Theorem
⊢ FINITE (Parents G) ⇒
BFT G f seen [] acc = acc ∧
BFT G f seen (h::t) acc =
if MEM h seen then BFT G f seen t acc
else BFT G f (h::seen) (t ⧺ G h) (f h acc)
[BFT_ind] Theorem
⊢ ∀P. (∀G f seen h t acc.
P G f seen [] acc ∧
((FINITE (Parents G) ∧ ¬MEM h seen ⇒
P G f (h::seen) (t ⧺ G h) (f h acc)) ∧
(FINITE (Parents G) ∧ MEM h seen ⇒ P G f seen t acc) ⇒
P G f seen (h::t) acc)) ⇒
∀v v1 v2 v3 v4. P v v1 v2 v3 v4
*)
end
HOL 4, Kananaskis-14