IN_CONV : conv -> conv
t IN {t1,...,tn}
Given such a conversion, the function IN_CONV returns a conversion that maps a term of the form t IN {t1;...;tn} to the theorem
|- t IN {t1;...;tn} = T
if t is alpha-equivalent to any ti, or if the supplied conversion proves |- (t = ti) = T for any ti. If the supplied conversion proves |- (t = ti) = F for every ti, then the result is the theorem
|- t IN {t1;...;tn} = F
- IN_CONV REDUCE_CONV ``2 IN {0;SUC 1;3}``; > val it = |- 2 IN {0; SUC 1; 3} = T : thm
- IN_CONV REDUCE_CONV ``1 IN {0;2;3}``; > val it = |- 1 IN {0; 2; 3} = F : thm
- IN_CONV NO_CONV ``1 IN {3;2;1}``; > val it = |- 1 IN {3; 2; 1} = T : thm